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Abstract. The problem of estimating time-varying regression is in-
evitably concerned with the necessity to choose the appropriate level
of model volatility - ranging from the full stationarity of instant regres-
sion models to their absolute independence of each other. In the sta-
tionary case the number of regression coefficients to be estimated equals
that of regressors, whereas the absence of any smoothness assumptions
augments the dimension of the unknown vector by the factor of the time-
series length. The Akaike Information Criterion is a commonly adopted
means of adjusting a model to the given data set within a succession of
nested parametric model classes, but its crucial restriction is that the
classes are rigidly defined by the growing integer-valued dimension of
the unknown vector. To make the Kullback information maximization
principle underlying the classical AIC applicable to the problem of time-
varying regression estimation, we extend it onto a wider class of data
models in which the dimension of the parameter is fixed, but the free-
dom of its values is softly constrained by a family of continuously nested
a priori probability distributions.

Key words: Akaike Information Criterion (AIC), Kullback information
maximization principle, nonstationary signal, time-variability of regres-
sion coefficients

1 Introduction

The Akaike Information Criterion (AIC) [1] is adopted in data analysis as a
simple and effective means of adjusting the most adequate model to the given
data set among a discrete succession of nested parametric model classes.

Let the given data set y = (yt, t = 1, . . . , N) be considered as a sample of
independent random variables with an unknown density ϕ∗(y) , whereas the
observer assumes a parametric family ϕ(y |c), c ∈ Rm. It is a typical case that
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the parameter dimension m is certainly too large for the ”actual” density ϕ∗(y)
and the size N of the sample, what makes senseless the maximum-likelihood
estimate

ĉ(y) = arg max lnΦ(y |c), ln Φ(y |c) =
∑N

t=1
ln ϕ(yt |c). (1)

The observer’s assumption is that the elements of c are naturally ordered
by their ”importance”. The idea is to truncate the parameter vector ci = 0,
n < i ≤ m:

c = (cn, cm−n), cn ∈ Rn, cm−n = 0 ∈ Rm−n. (2)

So, the density family Φ(y | c) turns into a succession of nested families
Φ

(
y | c = (cn,0)

)
, Rnmin ⊂ · · · ⊂ Rnmax .

The classical AIC is a criterion of choosing the dimension as the most ap-
propriate level of model complexity n̂(y) = arg maxn

[
ln Φ

(
y | (cn(y),0

)) − n
]

instead of the plain likelihood maximization (1). However, this formula was de-
signed under the assumption that 52

cncn
ln Φ

(
y |(cn,0)

)
is a full-rank matrix at

the point of the maximum likelihood, and, so, the estimate ĉn(y) is unique. To
cover the most general case, the penalty n should be replaced by the rank of this
matrix:

n̂(y) = arg max
n

{
ln Φ

(
y |(cn(y),0

))−Rank
[52

cncn
ln Φ

(
y |(cn(y),0

))]}
(3)

The main idea underlying the AIC is the view of the maximum point of
Kulback similarity between the model and universe

n∗ = arg max
n

∫ [
ln Φ

(
y |(c∗n,0)

)]
Φ∗(y)dy (4)

just the desired dimension under the assumption that Φ∗(y) = Φ
(
y | (c∗n∗ ,0)

)
with some value (c∗n∗ ,0), cut out from the unknown c∗ = (c∗1, . . . , c

∗
m).

One of the first applications of AIC was modeling of a nonstationary signal
on the discrete time axis by dividing the time interval into an unknown number
n of blocks and adjusting a locally stationary autoregression model of a fixed
order k to each of them [2].

After Akaike’s pioneering paper [1], numerous modification of the information-
based parsimony principle in model building were proposed [3],[4],[5],[6], among
which the Bayesian Information Criterion (BIC) [3] has found the most wide
adoption. However, all the known model selection criteria are aimed at the prob-
lem of choosing the most appropriate model within a succession of rigidly nested
model classes.

The search for ways of generalizing the classical AIC, undertaken in this
paper, was prompted by the needs of nonstationary signal analysis when the
regression model of the given time series

(
(yt,xt),t = 1, . . . , N

)

yt = cT
t xt + ηt, ct,xt ∈ Rk, ηt ∼ N (ηt |0, δ), E(ηt,ηs) = 0, (5)
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is assumed to be changing gradually over the observation interval [7]. In this
scenario, the dimension of the parameter vector in the family of conditional
probability densities Φ(y | x, c) is fixed c = (c1 . . . cN ) ∈ RkN and k times
exceeds the number of observations. Instead, it is assumed that the sequence of
regression coefficients to be estimated is a hidden Markov random process

ct = ct−1 + ξt, ξt ∼ N (ξ |0, λδI) , E
(
ξtξ

T
s

)
= 0, (6)

which starts with an unknown first value c1 ∼ N (c1 |0, ρI), ρ → ∞, and is ex-
cited by zero-mean white noise. The noise variance λ is the structural parameter
which determines the time-variability level of the regression coefficients, rang-
ing from full stationarity λ = 0 to absolute independence of instant regression
models λ →∞.

This is a typical example of a softly constrained signal model in which the
growing values of λ define a system of continuously nested families of degen-
erate a priori probability densities Ψ(c | λ) starting from the ”uniform” distri-
bution in Rk when λ = 0 and ending with the ”uniform” one in RkN when
λ →∞. This situation suggests the informal notion of some ”fuzzy dimension”
of the parameter c continuously changing from k to kN as λ grows instead of
the discrete sequence of integer-valued dimensions. It is required to find the
most appropriate value of λ which would provide sufficient approximation of the
given time series

(
(yt,xt), t = 1, . . . , N

)
by the nonstationary regression model(

yt = cT
t xt, t = 1, . . . , N

)
, on the one hand, and avoid overfitting, on the other.

It is clear that Akaike’s criterion is inapplicable to the problem of choos-
ing the real-valued time-volatility parameter 0 < λ < ∞ of the time-varying
regression model. In [7], we applied the leave-one-out cross validation embed-
ded into the Kalman-Bucy filter-smoother. However, this principle inevitably
leads to the necessity to process the given signal N times in accordance with its
length, and destroys, thereby, the originally linear computational complexity of
the estimation algorithm with respect to N .

In this paper, with the purpose of extending the computationally perfect
Akaike’s principle onto the case of data models with continuously changing fuzzy
dimension of the unknown parameter, we consider the parametric model of the
unknown universe F ∗(y) as a continuous mixture of conditional densities from
the given family Φ(y |c), c ∈ Rm, with some assumed mixing density Ψ(c |λ):

F (y |λ) =
∫

Φ(y |c)Ψ(c |λ)dc, c ∈ Rm. (7)

The structural model parameter λ to be adjusted to the observed data set y is
assumed to provide the optimal degree of moderating the too large dimension of
c. Once the value of λ is chosen, the Bayesian estimate will be the final result of
data analysis:

ĉλ(y) = arg max [ln Φ(y |c) + ln Ψ(c |λ)] . (8)

We keep to the same idea as (4), namely that of achieving the maximum fit
of the model distribution F (y |λ) (7) to the universe F ∗(y) by varying λ.
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There exist, at least, two ways of treating the idea (4) under the assumption
(7). We study here both of them and show that, in each case, the resulting
continuous versions of the criterion boils down to the classical AIC with the
respective choice of a priori density Ψ(c |λ).

Finally, we experimentally illustrate the proposed continuous generalization
of AIC by its application to the problem of time-varying regression estimation,
and compare the results with those obtained by the usual leave-one-out cross
validation.

2 Two ways of measuring the Kullback similarity
between the model and universe

On the one hand, the mathematical expression of observer’s aim would be max-
imizing the Kullback similarity between F (y |λ) and F ∗(y) like in (4):

λ∗ = arg max
λ

∫ [
ln F (y |λ)

]
F ∗(y)dy. (9)

This ”ideal” criterion suits any actual distribution F ∗(y).
On the other hand, the accepted model (7) involves the random parameter

c as a hidden variable. It may be considered as important to fit the joint dis-
tribution H(c,y |λ) = Ψ(c |λ)Φ(y | c) to the hypothetical actual one H∗(c,y).
Such an intention makes sense only if the unknown distribution of the universe
F ∗(y) is assumed to be consistent with the accepted parametric family Φ(y |c),
i.e., if there exists a distribution Ψ∗(c) such that

F ∗(y) =
∫

Φ(y |c)Ψ∗(c)dc. (10)

Then H∗(c,y) = Ψ∗(c)Φ(y | c), and the ”ideal” criterion for choosing λ should
be put as

λ∗ = arg max
λ

∫∫ [
ln H(c,y |λ)

]
H∗(c,y)dcdy. (11)

We shall see that the concepts (9) and (11) lead to essentially different con-
tinuous generalizations of AIC.

3 Basic assumptions and some properties of the
parametric density families

Assumptions. We restrict here our consideration only to the case when the
parametric density family ϕ(y | c) yields quadratic logarithmic likelihood func-
tions ln Φ(y |c) of parameter c for samples y = (yj , j = 1, . . . , N) of sufficiently
large size N . This may be achieved, for instance, by the Laplace method of Gaus-
sian approximation [8] to Φ(y | c) in a vicinity of the Bayesian estimate ĉλ(y)
(8). So, the Hessian

A = 52
cc ln Φ(y |c) (12)
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called Fisher information matrix is considered as not depending on the point c
at which it is defined. In particular, for the maximum likelihood estimate ĉλ(y)
(1), even if it is not unique,

ln Φ(y |c) = ln Φ(y | ĉ(y)) + (1/2)(c− ĉ(y))T A(c− ĉ(y)),

5c log Φ(y |c) = A(c− ĉ(y)).
(13)

Further, practical problems usually suggest constructing Ψ(c |λ) as a family
of degenerate normal densities which are ”uniform” in some parallel affine mani-
folds within Rm. In this case, the notion of mathematical expectation as a point
is, generally speaking, inapplicable, it is rather associated with a subspace, and
only conventionally may be taken as equal to zero.

We shall assume that the logarithmic a priori densities lnΨ(c | λ) are
quadratic functions which reach their maxima at zero 5c ln Ψ(0 | λ) = 0 and
are determined by negative semidefinite Hessians

Bλ = 52
cc ln Ψ(c |λ), (14)

which are, as a rule, degenerate, so that

ln Ψ(c |λ) = constλ + (1/2)cT Bλc,

5c ln Ψ(c |λ) = Bλc.
(15)

The dependence of constλ on parameter λ is determined by the specificity of
the family of Hessians Bλ. In particular, if the Hessians are nondegenerate,
the positive definite matrices −B−1

λ are covariance matrices of usual normal
distributions with zero mathematical expectations:

Ψ(c |λ) =
1

| −Bλ |−1/2 (2π)m/2
exp

(
−1

2
cT (−Bλ)c

)
,

ln Ψ(c |λ) =
1
2

ln |−Bλ | − ln
(
(2π)m/2

)
+

1
2
cT Bλc.

(16)

As to the unknown distribution of the universe F ∗(y) , we shall assume that
the family Φ(y |c) is consistent with it in the sense that there exists an unknown
density Ψ∗(c) which allows for the representation

F ∗(y) =
∫

Φ(y |c)Ψ∗(c)dc (17)

Properties. For a fixed λ, the Bayesian estimate ĉλ(y) (8) is unique if
the Hessian 5cc [lnΦ(y |c) + ln Ψ(c |λ)] = A + Bλ is negative definite. This is
the case in most practical situations even if A (12) is degenerate and, so, the
maximum likelihood estimate ĉ(y) (1) is not uniquely defined. More over, A+Bλ

is usually nondegenerate even if both A and Bλ (14) are degenerate.
In what follows, we shall need some more detailed properties of the relation-

ship between ĉ(y) and ĉλ(y).
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Let the random sample y be produced by a probability distribution Φ(y |c)
with some fixed parameter value c. It is well known for a much wider class
of conditional densities than the above-specified class (13), that, if A is full-
rank matrix Rank(A) = n , the random maximum likelihood estimate ĉ(y) is
unbiased ∫

ĉ(y)Φ(y |c)dy = c, (18)

and its conditional covariance matrix is completely determined by the Fisher
information matrix:

∫ (
ĉ(y)− c

)(
ĉ(y)− c

)T
Φ(y |c)dy = −A−1. (19)

In the more general case, if Rank(A) < n , (18) and (19) should be treated as
∫

A
(
ĉ(y)− c

)
Φ(y |c)dy = 0, (20)

∫ [
A

(
ĉ(y)− c

)][
A

(
ĉ(y)− c

)]T

Φ(y |c)dy = −A. (21)

If (13) and (15) are met, the random Bayesian estimate (8) is a linear function
of the likelihood estimate

ĉλ(y) = (A + Bλ)−1Aĉ(y) (22)

with conditional covariance matrix relative to the fixed value of parameter c
∫ (

ĉλ(y)−ĉλ(c)
)(

ĉλ(y)−ĉλ(c)
)T

Φ(y |c)dy = −(A+Bλ)−1A(A+Bλ)−1, (23)

where ĉλ(c) is the conditional mathematical expectation

ĉλ(c) =
∫

ĉλ(y)Φ(y |c)dy = (A + Bλ)−1Aĉ. (24)

4 The principle of maximum fit to the actual distribution
of the observed variable

Criterion. An immediate realization of criterion (9) is impossible even for the
reason alone that the actual distribution F ∗(y) is unknown. The maximization of
the likelihood function for the only available sample lnF (y |λ) (7) as an unbiased
estimate of the criterion is also senseless, because it will prefer the values of
the structural parameter suppressing moderation of the too large dimension of
c ∈ Rm.

To overcome ”the curse of the only sample”, we apply the respective gener-
alization of Akaike’s reasoning underlying the classical AIC [1], namely, imagine
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the existence of another independent sample ỹ yielding the random Bayesian es-
timate ĉλ(ỹ) (8), and replace ln F (y | λ) in (9) by the mathematical expectation
of ln Φ(y | ĉλ(ỹ)):

λ̂ = arg max
λ

∫ {∫ {∫ [
ln Φ(y | ĉλ(ỹ))

]
Φ(ỹ |c)dỹ

}
Φ(y |c)dy

}
Ψ∗(c)dc. (25)

Proposition 1. Under the assumptions (13) (15),
∫ {∫ {∫ [

ln Φ(y | ĉλ(ỹ))
]
Φ(ỹ |c)dỹ

}
Φ(y |c)dy

}
Ψ∗(c)dc =

∫
J1(λ |y)F ∗(y)dy,

J1(λ |y) = ln Φ
(
y | ĉλ(y)

)− Tr
[
A(A + Bλ)−1

]
.

(26)

Proof is based on the quadratic representation of lnΦ(y |c) (13) at c = ĉλ(ỹ)
and equalities (19)-(23).

Proposition 1 suggests a way of forming a continuous analog of the classical
AIC. Despite the fact that the density Ψ∗(c) in (17) remains unknown and, so,
the original criterion (25) is computationally intractable, the equality (26) shows
that the easily computable function J1(λ | y) is an unbiased estimate of the full
criterion. As a reasonable compromise, which is analogous to Akaike’s reasoning,
this function may be immediately maximized with respect to the sought-for value
of the structural parameter:

λ̂(y) = arg max
λ

{
ln Φ

(
y | ĉλ(y)

)− Tr
[
A(A + Bλ)−1

]}
. (27)

This is just a continuous generalization of AIC (3). Comparison of (27) and
(3) suggests interpretation of the penalty term Tr

[
A(A + Bλ)−1

]
as a con-

ventional ”fuzzy dimension” of the parameter c whose choice is constrained by
distribution ln Ψ(c | λ).

Algorithm of discrete search. However, to find the most appropriate λ̂,
it is required to compute the criterion (27) for a succession of tentative values
λ(1) < . . . < λ(M) with a sufficiently small step, just as when the usual AIC is
applicable.

We shall see in the next Section that the alternative criterion (11) allows,
at least in principle, to find λ̂ along with ĉλ̂(y) as result of a joint iterative
procedure, and to avoid thereby discrete enumeration of tentative values of λ.

5 The principle of maximum fit to the actual joint
distribution of the observed variable and hidden
parameter

Criterion. The principle (11) does not lend itself to numerical realization, ei-
ther, not only for the reason that the joint distribution H∗(c,y |λ) is unknown,
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but also because the random parameter c is hidden from observation. We resort
to the same trick as in the previous Section - imagine the existence of an inde-
pendent sample ỹ and replace ln H(c,y |λ) by the mathematical expectation of
ln H

(
ĉλ(ỹ),y |λ)

:

λ̂ = arg max
∫ ∫ {∫ [

ln H
(
ĉλ(ỹ),y |λ)]

Φ(ỹ |c)dỹ
}

H∗(c,y)dcdy.

Here ln H
(
ĉλ(ỹ),y | λ)

= ln Φ
(
y, ĉλ(ỹ)

)
+ lnΨ

(
ĉλ(ỹ) | λ)

and H∗(c | y) =
Φ(y |c)Ψ∗(c). We obtain the criterion

λ̂ = arg max
λ

∫ {∫ {∫ [
ln Φ

(
y, ĉλ(ỹ)

)
+

ln Ψ
(
ĉλ(ỹ) |λ)]

Φ(ỹ |c)
}

Φ(y |c)dy
}

Ψ∗(c)dc.
(28)

which differs from (25) only by the presence of the additional summand
ln Ψ

(
ĉλ(ỹ) |λ)

.

Proposition 2. Under the assumptions (13) and (15),
∫ {∫ {∫ [

ln Φ
(
y | ĉλ(ỹ)

)
+ ln Ψ

(
ĉλ(ỹ) |λ)]

Φ(ỹ |c)
}

Φ(y |c)dy
}

Ψ∗(c)dc =
∫

J2(λ | y)F ∗(y)dy,

J2(λ |y) = ln Φ
(
y | ĉλ(y)

)
+ ln Ψ

(
ĉλ(y) |λ)− Tr

[
A(A + Bλ)−1

]
.

(29)

Proof of this Proposition is based on the same reasons as that of Proposition 1.
The equality (29) shows that function J2(λ |y) is an unbiased estimate of the cri-
terion (28). Its immediate maximization yields another version of the continuous
AIC:

λ̂(y) = arg max
λ

=
{

ln Φ
(
y | ĉλ(y)

)
+ ln Ψ

(
ĉλ(y) |λ)−Tr

[
A(A + Bλ)−1

]}
. (30)

Joint criterion and iterative optimization algorithm. It is clear that
λ̂ found by criterion (30) and the respective Bayesian estimate ĉλ̂(y) satisfy the
joint optimization condition

(λ̂, ĉλ̂) = arg max Q(λ, c),

Q(λ, c) = ln Φ(y |c) + lnΨ(c |λ)− Tr
[
A(A + Bλ)−1

]
.

(31)

The sum
{

ln Φ(y | c) + ln Ψ(c | λ)
}

is concave function of c by assumption.

If, in addition, the difference
{

ln Ψ(c | λ) − Tr
[
A(A + Bλ)−1

]}
is unimodal

function of λ, having the only maximum point (d/dλ)
{

ln Ψ(c |λ) − Tr
[
A(A +

Bλ)−1
]}

= 0, which fact depends on the structure of matrix function Bλ, the
criterion Q(λ, c) will have the only maximum point with respect to the joint
variable (λ, c) ∈ Rm+1.
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6 A particular case: The classical AIC

Let the structural parameter be a whole positive number 0 ≤ λ ≤ m truncating
the ordered elements of the parameter vector c = (cλ,cm−λ) ∈ R as in (2) with
n = λ. i.e. cλ ∈ Rλ, cm−λ ∈ Rm−λ. The absence of any a priori information on
vector c may be expressed in terms of an ”almost uniform” normal distribution:

Ψ(c |λ) =
∏λ

i=1 ψi(ci |λ), ψi(ci |λ) = N (ci |0, σ2), σ →∞,

Ψ(c |λ) ∼= const = 0, ln Ψ(c |λ) ∼= const < 0.

Since only the first part of the vector parameter is free in the conditional
density Φ(y | cλ, cm−λ), the Hessian Aλ = 52

cλcλ
ln Φ(y | cλ,0) is a matrix

(λ×λ). Under these assumptions, both versions of the continuous AIC (27) and
(30) reduce to the criterion (3):

max
cλ

ln Φ(y |cλ,0)−Rank (Aλ) → max
λ

.

7 Time-varying regression estimation

In the problem of time-varying regression estimation (5)-(6), the Bayesian esti-
mate of the hidden sequence of regression coefficients c = (cT

1 · · · cT
N )T ∈ RkN

depends only on the ratio λ of assumed variances in observation δ and state δλ,
but its statistical properties essentially depend on the observation-noise variance.

To put the model into an explicit form, we consider the column vectors
y = (y1 · · · yN )T ∈ RN and c = (cT

1 · · · cT
N )T ∈ RkN , as well as the block-

diagonal matrix X = (Xts, t, s = 1, . . . ,N) of total dimension (kN × N) with
diagonal column-blocks Xtt = (xt, t = 1, ..., N) (k × 1) and nondiagonal blocks
Xts = 0 (k × 1), t 6= s .

Then, for the observation noise variance conventionally taken as equal to
unity δ = 1, the observation model (5) will produce the likelihood function
ln Φ(y |c) = lnN (y |XT c, I)

ln Φ(y |c) = const− (1/2)
(
(y −XT c)T A(y −XT c)

)
. (32)

The negative semidefinite Hessian A = −XXT (kN × kN) is block-diagonal
matrix with diagonal blocks Att = xtxT

t (k × k), t = 1, . . . , N . It is always
degenerate and, if the regressors

[
(xit, t = 1, . . . , N), i = 1, . . . , k

]
are linearly

independent, has the maximum rank Rank(A) = N . With δ = 1, the hidden
Markov model of regression coefficients (6) is expressed by the family of a priori
densities

Ψ(c |λ, ρ) = N (c1 |0, ρI)
∏N

t=2N (ct |ct−1, λI) =
1

ρk/2(2π)k/2
×

1
λk(N−1)/2(2π)(N−1)/2

exp
(
− 1

2ρ
cT
1 c1

)
exp

(
− 1

2λ

∑N

t=2
(ct − ct−1)T (ct − ct−1)

)
.



10

It is assumed that no a priori information on the first vector of regression coeffi-
cients is available, that is ρ →∞ and N (c1 |0, ρI) → constc1 ≡ 0. In logarithmic
form, for sufficiently large but finite ρ, we have

ln Ψ(c |λ) ∼= const + (1/2)k(N − 1) ln(1/λ)− (1/2)(1/λ)cT Bc =

const + (1/2)k(N − 1) ln(1/λ) + (1/2)cT Bλc,

Bλ = −(1/λ)B.

(33)

The structure of the negative semidefinite Hessian Bλ is defined by the de-
generate square block-tridiagonal matrix B (kN × kN) with the diagonal
(I, 2I, . . . , 2I, I) and two off-diagonals (−I, . . . ,−I) formed by identity matrices
I (k × k).

The Bayesian estimate of regression coefficients ĉλ(y,X) =
(
c1,λ(y,X), . . . ,

ck,λ(y,X)
)

is provided via minimization of the Flexible Least Squares criterion

ĉλ(y,X) = arg min
{∑N

t=1

(
yt − xT

t ct

)2
+ (1/λ)

∑N

t=2
(ct − ct−1)T (ct − ct−1)

}

by the Kalman-Bucy filter-smoother [7] for the time proportional to N .
In accordance with notations accepted in (32) and (33), the penalty term in

both criteria (27) and (30) will have the form

Tr
[
A(A + Bλ)−1

]
= Tr

[
XXT

(
XXT + (1/λ)B

)−1
]
.

Let the symmetric inverse matrix sum be represented here in block-wise
form as

(
XXT + (1/λ)B

)−1 = Dλ = (Dλ, ts, t,s = 1, . . . , N) with square blocks
Dts = DT

ts. Then, since matrix XXT is block-diagonal, the penalty term will
depend only on the diagonal blocks of Dλ:

Tr
[
A(A + Bλ)−1

]
=

∑N

t=1
Tr

(
xxT Dλ, tt

)
.

So, to compute the penalty term in the criteria (27) and (30), it is enough,
instead of full inverting the sum of matrices for each tentative value of λ, to
compute the diagonal blocks of inversion. This can be easily done by a slight
modification of the double-sweep method.

8 Ground-truth experiments

We analyzed 200 independent realizations of the random process (5) of length
N = 50 with three regressors (xit, t = 1, . . . ,N), i = 1, . . . ,k, k = 3, generated
as Markov model c∗it = c∗it−1 + ξit, i = 1, . . . ,k, t = 1, . . . ,N , and the sinusoidal
”actual” sequences of coefficients c∗it = 4 sin

(
(2π/N)t + (2π/3)(i− 1)

)
mutually

shifted by phase, and 10% noise variance δ = 0.1
(

(1/N)
∑N

i=1(x
T
t ct)2

)
.

It was assumed that no a priori information on the first vector of regression
coefficients is available ρ → ∞. The dependence of the ”efficient dimension”
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of the regression coefficient sequence (c1 · · · c,i = N) on the assumed time-
variability λ of regression coefficients computed for one realization of the random
regressor sequence is shown in Fig. 1. This dimension equals the number of
regressors in the case of zero variability λ → 0 and approaches the length of the
time series if λ →∞.

For each of 200 simulated time series, three values of the time-variability
parameter were computed using, first, two versions of the continuous Akaike
criterion (27) and (30), and, second, the traditional leave-one-out cross valida-
tion technique [7]. Then, we applied each of the chosen values to the remaining
199 time series as the control set, and compared the estimated and the ground-
truth sequence of the regression coefficient (c∗1 · · · c∗N ) and (ĉ1,λ̂ · · · ĉN,λ̂) by the
criterion

ελ̂ =
N∑

t=1

(ĉt,λ̂ − c∗t )
T (ĉt,λ̂ − c∗t )

/∑N

t=1
(c∗t )

T c∗t

.
We obtained the following results:

Mean value ελ̂
Criteria Sinusoidal sequence

of coefficients
c∗it = 4 sin

(
(2π/N)t +

ϕi

)

Coefficients generated
as Markov model
c∗it = c∗it−1 + ξit

Continious Generalization
of AIC (1) 0.02 0.016
Continious Generalization
of AIC (2) 0.004 0.013
Leave-one-out cross validation 0.003 0.046
As is seen, in the case of sinusoidal sequence of coefficients leave-one-out cross

validation principle has demonstrated the best results. It may be explain that
formally sinusoidal sequence of coefficients don’t satisfied Markov model, which
was used as the main assumption by forming AIC. If ”actual” coefficients are
satisfied this model, then a continious generalization of AIC recommended more
appropriate value of λ. The main advantages of AIC comparing with leave-one-
out cross validation principle are firstly, having strict one extremum, secondly,
the capability to recieve more adequate estimation of parameter, thirdly, at
the same time, the continuous AIC is incomparably more preferable from the
computational viewpoint.
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