DYNAMIC ANALYSIS OF HEDGE FUNDS

Michael Markov
Markov Processes International
428 Springfield Ave., Summit,
NJ 07901, USA
michael.markov@markovprocesses.com

ABSTRACT

In this paper, we review one of the most effecfivan-
cial multi-factor models, called the Returns Basgtyle
Analysis (RBSA), from the standpoint of its perf@nce in
detecting dynamic factor exposures of hedge furglsgu
only fund performance data. We analyze the shoritogsn
of these models in capturing changes in a dynamitfgdio
structure and lay the groundwork for a new approadtich
we call Dynamic Style Analysis (DSA). The probles i
treated as that of estimating a time-varying regjogs
model of the observed time series with the inelétaleces-
sity to choose the appropriate level of model Vdiatranging
from the full stationarity of instant models to ithabsolute
independence of each other. We further proposeffaieat
method of model estimation and introduce a novelsues of

the validity PredictedR® that is used to select the model

parameters. Using both model and real hedge funcheewe
illustrate the advantages of the proposed technigaaalysis
of hedge funds.
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1 Introduction

Hedge fund industry has grown rapidly over the piest-
ade to almost $1 trillion in assets and over 8,f0@s. At
the same time, the amount of information on hedgel$
available to investors is negligible as comparedr#ali-
tional investment products such as mutual fundsmbst
cases, the only available information on a hedgel fis a
time series of monthly returns and a vague desonipdf
the strategy. Returns are then analyzed using iatyaof
multi-factor models in order to detect the sengitiof the
hedge fund strategy to various risk tfas (factor expo-
sures) as well as to explain the fund’s performancehia t
past.

One of the most effective and practical multi-factmdels
for analyses of investment portfolios, called thetugs-

Based Style Analysis (RBSA), was suggested by ®harp

[1,2]. In the RBSA model, the periodic return géa@tfolio is
approximately represented by@nstrained linear regression
of a relatively small number of single factors whasle is
played by periodic returns of generic market inglieach of
which represents a certain investment style ooséotarket
capitalization, quality, duration, region, etc.).

In order to account for allocation changes in agtigrtfolios,
Sharpe used a moving window of some preset lerjtrag-
SL_Jrr(Ijing that the structure of the portfolio is canstnside the
window.

This work is supported by the Russian FoundatiorBfasic Re-
search, Grant 06-01-00412.

llya Muchnik
Rutgers University
P.O. Box 8018, Piscataway,
NJ 08854, USA
muchnik@dimacs.rutgers.edu

Vadim Mottl, Olga Krasotkina
Tula State University
Lenin Ave. 92, Tula, 300600, Russia
vmottl@yandex.ru

Fung and Hsieh [3] applied RBSA to hedge funds e/liee
method was reduced to unconstrained linear regressiac-
count for shorting and leverage typical for hedgedf strate-
gies. They note a significant loss of explanatooyver of
RBSA as compared to traditional investment prodsuath as
mutual funds (0.25 and 0.75 medi@i respectively). They
conclude that such a low®® is due to dynamic nature of
hedge fund strategies and introduce generic indies
signed to capture hedge fund dynamics, thus inicrgase-
dian R? to 0.4 using the same static regression approach.

In [4], Fung and Hsieh further explore the issuenoh-
stationarity of RBSA and introduce a method to cestruc-
tural breakpoints in factor exposures to improve Rf, but
otherwise the allocations remain constant withenektimation
window.

As a generalization of the static RBSA model, weppse
here a dynamic model in which a portfolio weights eon-
sidered as changing in time. The proposed appraoelaich
we call Dynamic Style Analysis (DSA), consists stimat-
ing a time-varying regression model of the obseriad
series of periodic returns of the portfolio and gggn market
indices. Time-varying regression has been subjeuiten-
sive study in statistical and econometric literatduring, at
least, the recent fifteen years [5,6]. In this papes con-
sider the problem of estimating a time-varying esgion
model of a portfolio in its inevitable connectioritlwthe
necessity to choose the appropriate level of Vityadif results,
ranging from the full stationarity of instant regg@®n models
to their absolute independence of each other. k@psing the
volatility level, we use the leave-one-out prineiplidely
adopted in Machine Learning [7,8].

We illustrate the proposed approach to portfolialysis by
applying it to both model and real hedge fund stjiats.

2 Sharpe’s Returns Based Style Analysis and its
limitations

In Sharpe’s model, the periodic return on a paidfol®
is being approximated by the return on portfolioaskets
indices r® with weights (8%, ...,8™) equal to fractions
invested in each asset at the beginning of theogarnder

the assumption that the entire budget is fully spenthe
investment:

r(» D”’fzin:lﬁ(i)r(i) _ 1)
In [2], Sharpe used this model to analyze perforeasf a
group of US mutual funds and determined that aifsogmt
portion of a fund return can be explained by smalnber
of assets. In order to estimate parameters of thaeh(1),
Sharpe would take monthly returns on both the phbotf
{r”} and asset indexe§r’} for consecutive months
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t=12,3,.. and solve the following constrained quadratic
optimization problem:

~ ~ . . \2
(‘7”3(1)""”8(“)):ZtN:l(rt(p) —H—leﬁ‘”n")) ~ min,

B 20, 3" O =1
) A
The resulting coefficient§3Y,...,3™) help to identify the

major factors determining portfolio performance.

Further, recognizing that portfolio structure chasgver
time, Sharpe used a series of optimizations in nmgpwin-
dows of a smaller lengthiK to determine the dynamics of
portfolio factor exposures:
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The model (2) became commonly adopted in the modern

Finance under the name of Returns Based Style Aisaly
(RBSA). The main appeal of this method for praetigrs is
that it is based solely on analysis of portfolidquras and
does not require any other, very often proprietarfigrma-
tion about the portfolio composition.

The two major factors contributing to such wide eg&c
tance of RBSA are its ease of interpretation aabilty of
results. It is worth noting that both factors ahe tirect
result of the presence of non-negativity constgaint (2).
These constraints, being the major innovation inSRB
provide important prior information about the arzalg
portfolio, i.e., the fact that most of investmenrdrtfolios
such as mutual funds don’t take short (negativejtipms.

Since its introduction in 1992, Sharpe’'s model (Bs
been criticized for its inability to capture an iaetportfo-
lio's dynamics. Thus, because portfolio structsrassumed
constant within estimation window, moving windowche
nique (3) appears to be inadequate to capture dgidges
in portfolio structure.

In addition, model (1) loses most of its advantagesn it is
applied to analysis of portfolios that are allowedtake
short (negative) positions. In such cases, nonindiya

constraints 3” >0 have to be dropped from (2), and the

problem is reduced to a simple linear regressiomast such
cases, due to multicolinearity effect, moving wiwdmethod
(3) produces highly unstable, meaningless results.

The two limitations above make RBSA inapplicable fo
analysis of hedge funds because, unlike traditionastment
vehicles such as mutual funds, hedge funds arereety dy-
namic and take significant short positions.

Most attempts to overcome these shortcomings of/RBS
limited to introduction of additional indices intihe static
model (1) to capture the specifics of a genericgeeflind
strategy [3]. None of the methods available to depeesent
true dynamic model and, therefore, their explanapmwer
remains low.

3 Limitations of RBSA: Dynamic model of a hedge
fund

We will illustrate the shortcomings of RBSA usingienple
model of an equity long-short hedge fund. The Ipagjtion of
such a fund is created using Russell 1000 ValueGnogvth
indices with weights following a sine-wave pattessshown in
Figure 1.

The fund is invested 100% in the Russell 1000 Ghnoag
of Jan-96 and then shifts assets into Russell N&l0e
with a relatively low 50% annual turnover. At angimt of
time the sum of both index weights is equal to 100%
then create a long-short model portfolio (MP) by0%0O
hedging the long portfolio with S&P 500 Index, j.effec-
tively subtracting the index returns from the lgogytfolio
return.

Model Portfolio Weights
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Figure 1. The long-short model portfolio.

Next, we perform rolling 12-month window Sharpe’s
RBSA (3) on the composite monthly return time seidé
the portfolio MP using, as regressors, the sameethr
monthly indices that were used in its constructiohe re-
sults are presented in Figure 2 where estimatedatlbns
are stacked along the Y-axis.
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Figure 2. Estimated model portfolio, 12-month tragl
window.

The results don’t materially change when we varg th
window size. In Figure 3 we show results of rolligg-
month window.



Estimated W eights - RBSA 24M Window
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Figure 3. Estimated model portfolio, 24 month trejl
window.

Although the turnover of the model portfolio is ydow
and the number of assets is very small, RBSA failade-
quately identify the model. Since no noise was ddtte
model portfolio returns, this provides clear indica that
such poor model identification is the result of thiedow-
based approach and multicolinearity as noted irti@ee,
rather than noise in data as it is usually assutme@iable 1
below we present the correlation matrix of assetsduin
construction of portfolio MP computed over the satbfe
year period using monthly returns. The numbersratkets
represent the range of correlations computed ooking
24-month windows.

The dynamic model introduced further in this papkmi-
nates shortcomings of Sharpe’s RBSA and makegplicaple
to long-short strategies and hedge funds.

Table 1. The correlation matrix of assets constituthe
model portfolio.

R1000G R1000V S&P500
R1000G 1.00
R1000v | 0.71(0.27;0.95 1.00
S&P500 | 0.94 (0.88;0.99) 0.90 (0.67;0.99)  1.00

4 Dynamic Style Analysis (DSA)

In contrast to Sharpe’s static model (1), we preposre a
model in which factor exposures of the portfolie ahang-
ing in time. Lett =1,2,...,N be a sequence of holding peri-

ods, for instance, days, weeks, months, quartergears,
and

B=(B.t=..N), B=(8"B,..8"), >  B"=1,

be the respective sequence of the portfolio’s exiss at
the end of each period. The notati” is reserved here

for a short-term instrument, such as bank depasé#ni in-
terest bearing account, often referred to as ns&-asset.
For simplicity, we will express the model in terwisex-

cess returns on the portfolior,”-r®) and assets

(r"-r®) with respect to the return on the risk-free asse

r®. Such an equivalent notation effectively elimirsatiee
. n i _ .
need for the budget constraigf® +Zi=1/35) =1 in (1).

The new dynamic model of periodic portfolio retuna be
written as follows:

yt :(rt( p)_rt(O)):z:q:lﬁt(i)(rt(i)_rt(O)):z:q:lﬁt(i)Xta)+q :B:Xt-'-q
(4)

Here y,=(r”-r”) are known excess returns of the portfolio
for each periodt, and x= (r-r),i=1,...n[OR" are
known vectors of observed excess returns of afzethese
periods, whereag,=(5®,...5")0R" are vectors of time-
varying fractional asset weights to be estimated.

The key element of the proposBgnamic Syle Analysis
(DSA) is treating fractional asset weights as alaidproc-
ess assumealpriori to possess the Markov property:

B =ViB.t&,, ®)
where matrices/, determine the assumed hidden dynamics
of the portfolio structure, and, is the vector white noise,

nonstationary in the general case.

The equation (5) determines the state-space mddeldg-
namic system, while (4) plays the role of its obaton model.
In these terms, the DSA problem can be describedtanat-
ing the time-varying state of the respective dymasyistem

B(Y, X)=(B, (Y, X),t=L,....N) from observations
(Y, X)=

[ x)=(67 ), 60+ @),i=1,..0) 1=1,.N].

For estimating time-varying models of kind (4)-(%)e
use theFlexible Least Squares approach (FLS) first intro-
duced in [5]. As applied to the DSA problem, theSHtrite-
rion has the form

B(Y,X,A)=argminJ B, t=1..N Y X ),
IP.t=L..N Y XF
S BIX)HAY L BV B) U BV BL).

The assumed covariance matri€@s of white noiseg, in (5)

occur here in the inversed fort, =Q;*. We shall additionally
assume matrice®/, to be non-degenerate, in this case, they
will determine also the reversed dynamics of thetvarying
regression coefficients.

The positive parameted in (6) is responsible for the
noise ratio in (4)-(5), i.e. for the level of smboess of re-
gression coefficients. Thus, the smoothness pasmet
balances the two conflicting requirements: to pilevclose
approximation of portfolio returns and, at the samee, to
control the smoothness of asset weigjtover time.

(6)

5 The cross validation principle of estimating the
smoothness parameter

The FLS criterion (6) depends on a number of patarse
Matrices V, and U, of the transition model (5) can be de-
tfined a priori, depending on the model of hiddemaiyics
of time-varying regression coefficients and theyl&st of
smoothing of their estimates. For example, matfixcan

be defined as the unity matrix thus requiring siergrhooth-
ness of estimates. Alternatively, we could allow fmn-



smoothness of asset weights by incorporating matie¢n
changes of weights into transition model (5) abofos:
B = 1+x3

! z” LX)

k=1 /"t-1"t-1

As to the coefficient , it is extremely problematic to pre-
set its value a priori. At the same time, thera deep speci-
ficity in estimating it from the observed time s

If the volatility parameter is given a certain vald , the
FLS estimate of time-varying regression coefficset(6)
will be a function of it B(Y, X,A) = ([3t (Y, X, A),t =1, N)

It is impossible to find an “appropriate” value df by at-
tempting to additionally minimize the residual smsasum

in (6) X" (yBra(v, X, A)x,)" — min, .

Indeed, whenad - o, the second sum in (6) totally pre-
vails over the first sum, the values of the hidgeocess

become functionally related to each otfﬁr(Y,X,/]):

W+ &0 i=1,..n,t=2,..,N.

where it is known under the name of the “leave-ou#-
procedure [8,12].

As applied to verification of the accuracy of thé&SF
model, the essence of the Cross Validation priecgain be
explained as the idea to assess the adequacy dfitee
model by estimating the variance of the residu@e®(e)

in (4) and comparing it with the full variance dfet goal
variable D(y) = (:I/N)ZtN=1 (y,)* - But, when computing the
error at a time momertt, it is incorrect to use the estimate
Bt obtained by minimizing the criterion (6) with paipa-
tion of the observation at this time momefy,x,) . The

CV principle leads to the following procedure tipabvides
a correct estimate of the observation noise vaganc

In the full time series((y;,X,),.... ¥y Xy ), single ele-
ments t =1,...,N are skipped one by oné(yl,xl),...,
(yt—l’xl—l)1 (yt+1’xt+1)!"'!(yN Xn ))’ each time by replac-

a . . . 2
V,B._.(Y, X, A), and the model is reduced to a static regressioning the SumZtN:l[yt -(B.W) Xt:' in (6) by the truncated

If, on the contrary A — 0, the instantaneous values are getting

a priori independent, each estimaf}e_l(Y,X,/l) is deter-
mined practically by only one current element @& time se-
ries (y,, X, ) , and the model will be “extremely” time-varying.
Actually, the sought-for sequence of time-varyimgnes-
sion coefficients B(Y, X,4) = (B, (Y, X,A),t =1,...N) is a
model of the observed time series(Y, X)=

[ex)=(6P )60 +@),i=1...n) £=1,.N |, and the

sum Z:=15¢t[ys‘(ﬁs(/l))TXs]2a and the optimal vector

sequencesB,...,BY ) are found, where the upper index

(t) means that the observatidly,,x,) was omitted when

computing the respective estimate. For eacthe instanta-
neous squared prediction error is calculated usiregre-

) . . TP
spective single esnmat%yt —( o (/1)) xt] . The cross-
validation estimate of the noise variance is fowsdthe

choice of A is the choice of a class of models which would average over all the local squared prediction srror

be most adequate to the data. A commonly used meea$u
regression model fit is its coefficient of deterationR?.
This coefficient was computed by Sharpe in his waikas
the proportion of the portfolio volatility explaideby sys-
tematic exposures using the moving window techni@)e
In terms of the FLS criterion (6), the coefficiaitdetermi-
nation will be expressed as the ratio

o SR B o) S (Bl )
) >
(7

However, by decreasing , it is easy to driveR? up to
100% and, at the same time, obtain highly volatiean-

ingless estimates of fractional asset Weigfip(sf, X, A).

The major reason for such inadequacy of Rfestatistic
is that it uses the same data set for both estimaind veri-
fication of the model. Th&€ross Validation method sug-
gested by Allen [9] under the nameRykdiction Error Sum

8)

The less f)cv (e]A), the more adequate is the model with
the given value of the smoothness paraméteto the ob-
served time serie§(y;, X,), ..., (y Xy ) -

The cross-validation estimate of the residual naigg-
ance f)cv (e]A) can be further scaled to make it comparable
across different analyzed portfolios. We suggestdioss-
validation statistic
D(y) — D, (e] 1) =1- Dy (€]4)

9)
D(y) D(y)
which we callPredicted R-squared. Note that it is computed
similarly to the regression R-squared statistic (7)
We suggest a method of determining optimal model pa
rameters that consists in processing the given serées

((Y1,Xy), -, (Vy Xy ) several times with different tentative

Doy (eM):%ZN:[yt _(A?) (/]))TXJ

t=1

PR?(1) =

of Squares (PRESS) is aimed at overcoming this obstacle.values of A. Each time, the model adequacy is assessed by

According to this method, an observation is remofrech
the sample, the model is evaluated on the remaiolsgr-
vations, and the prediction error is calculatedtba re-
moved observation. This procedure is then repdateghch
observation in the sample, and the sum of squaredses
computed. The Cross Validation principle is widatiopted
in data analysis [10,11], including pattern rectigni

the averaged squared prediction error (8) estimbjethe
cross validation procedure. The valu€' that yields the
maximum value of the cross-validation statistic i€@jo be
taken as the smoothing parameter recommended &r th
given time series:

AP =argmax, PR? @ ). (10)



It should be noted that the selection of model patars
through minimizing the prediction error makes tiisthod
a version of the James-Stein estimator produciagsthall-
est prediction error [10].

6 Kalman filter and smoother for minimization of
flexible least squares and cross validation

The FLS criterion (6) is a quadratic function, aitsl
minimization leads to a system of linear equatiohisthe
same time, it belongs to the class of so-called-\wie
separable optimization problems [13], in which titgec-
tive function is the sum of functions each depegain not
more than two vector variables, in this ce8g, and B,
associated with immediately successive time moméss
result, the matrix of the linear equation systetatiee to
variablesf,, ...,8, will have block-threediagonal structure,
which allows for easily solving it by the doubleesp
method, which is a quadratic version of the muchengen-
eral dynamic programming method [13]. These eqaival
algorithms are, in their turn, equivalent to thdrikan filter
and smoother [14].

First, the Kalman filter runs along the signal

Bl|l = (yl/XT1X1)X1v Q1|1 = X1XT1 att=1,
Bth :VtBt—u—l"'Qt_;lXt(yt _XtTVtBt—m—J)v t=2,.,N, (11)

-1 _
Q1|1=X1X;F+UtV1(V1TU 1vt+(1//1 p l—l|[—1) Q 1—1;—}/1 =

XX{ +(ViQuy V" + /auy’)
The intermediate vector,, and matrice€Q,, are parame-
ters of the so-called Bellman functiodg (B,) being quad-
ratic in this case [14]:

‘]t|t(Bl):minBl,,,,,Bt_l‘]t (Bl' --'1B1 ): Bt_Bu )TQM Bt_Btt )+COHS ’
‘]t (Bl' ""Bt ):Ztszl (ys—B-sr Xs )2+/1215=2 @s_VsBs—l )TU s q3s_VsBs—1

have to use at stept the matrix Qf=

_ —1\1 .
Qtlt—xlxtT:(Vth_“_lVl 1+(:I//1)Ut1) instead ofQ,, (12).

7 The Computational Complexity of DSA

However, straightforward application of the crosdida-
tion principle (8)-(10) to determining value of temooth-
ness parameter implies running the Kalman filtratio
smoothing procedure (11)-(14)Y times for each removed
observation corresponding to time peribdwhich fact will
destroy the linear computational complexity of thlgo-
rithm with respect to the length of the time seriés Thus,
to analyze N=120 monthly returns of a portfolio using
n=10 economic sectors as variables, it is requiredbtees
a quadratic problem (6) witiNn=1,200 variables, what can
be easily done by the standard Kalman filter-smerttav-
ing linear computational complexity with respectNo. But
in order to compute the cross-validation stati§dic corre-
sponding to a single value of the smoothness pdesme
N =120 such optimizations are required, and computing the
CV statistic on a grid of 20 values of this paraeneequires
solving 20N =2,40C problems (6), i.e. 2,400 runs of the
optimization procedure.

To avoid repeated processing of the signal for ¢auta-
tive value of A, a technique of incorporating computation
of the leave-one-out error (8) into the main dyramio-
gramming procedure is proposed in [14]. It is shaat

the estimate3® (1) is determined by the expression

Agt) (A) = ﬁt (Y(t) ’ X ® 1/]):(Q1|N _Q?)_I(QMN Bt|N _Qtoﬁto) ’
where matrice®Q,, are to be additionally computed at the
backward run of the Kalman smoother for N-1,...,1

Qu=(HVIQIAN VY HT+Q (N Y LY )7

Here J,(B,.....B,) are partial criteria of the same structure asstarting with matrixQ,,, found at the last step of the Kal-

(6). The minimum point§,, of the Bellman functions yield the
so-called filtration estimates of the unknown ragien

coefficients at current under the assumption that the time

series is observed only up to point
Then, the Kalman smoother runs in the backwardcdire
tiont=N-1,...,1I

Bt = Blh + Ht (BHl _Bt[) )
-1
H, = (VL AUV +Qy ) VLU LNV =
(1+ /aViVLVETy,)
The resulting sequence is just the minimum poirthefFLS

criterion (6) B(Y, X, A)=(B, (Y, X,A),t =1,...N).

To compute the leave-on-out estimate of the nasmnce
(8), we have to find the estimate of each regrassiefficient

vector B, (Y?,X® 1) from the time series(Y®, X®)=
((¥e:X,),5=1,...t = 1t + 1,..N) where the elementy,, ,)
is cut out. This means that, when running the Kalfiieer, we

(13)

(14)

-1

man filter (12).

8 Testing the DSA Approach: Dynamic model of a
hedge fund

We applied the DSA approach (6) to the model pbotfo
MP developed in Section 3 with the smoothness petraim
A selected in accordance with (10). The result afhsu
analysis is shown in Figure 4.

In order to test sensitivity of the model to noisedata,
we added an idiosyncratic white noise to the MP tinlgn
returns in the amount of 20% of the MP volatilityrhe
resulting portfolio returns were analyzed, andrémsult cor-
responding to the maximum value of the CV statigtic
shown in Figure 5. The result corresponds to th@mab
smoothness parameted =0.2 selected to provide the

maximum value of thePR? statistic (10).

! Since the standard deviation of MP monthly retusmer 120
months makew =1.08, we applied white nois?(0,0.22).



Estimated Weights - DSA For our analysis we used 10 indexes provided by Dow
O S&P 500 Index

O Russell 1000 Value Jones Indexés The result of the analysis using a 36-month
* Russell 1000 Gowth window RBSA (3) is presented on the Figure 7.
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H Utilities

M Telecomm

B Technology

B Consumer, NCycl
W Industrial

O Hedlthcare

B Financial

B Energy

@ Consurer, Cycl
W Basic Materials

Weight, %

-150+
799 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Created with MPI Stylus

Figure 4. DSA approach — estimation of the modeffgii.
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Figure 7. Results using RBSA in 36 month window.

%6 199 1907 1998 1999 2000 2001 2002 2003 2004 2005 The result is very volatile and unrealistic W|fh2: 060
Figure 5. DSA approach — noisy model portfolio. (7). Shortening the estimation window produces &igR®
value but much more volatile results.
9 Case Studies We then applied the DSA approach using the sanuenret

_ _ o data and selected the optimal parametetin accordance
In this section, we present examples of the agmicaof  with (10). The resulting sector exposures are pteskein
the dynamic multi-factor methodology developedhiis pa-  Figure 8.
per to real-life hedge funds. In Figure 9 we present the values of criteri@f®? (4)
9.1 Laudus Rosenberg Value Long/Short Fund (10) corresponding to varioud plotted along logarithmic

) axis and the optimal value of the smoothness patamh%.
According to the fund prospectus, the Laudus Ra=@nb Eyen though the weights are much less volatileiguie 8

Value Long/Short mutual fuldvas using computer models than the ones in Figure 7 obtained using 36-mooling
for buying underpriced US stocks and selling stafisrt in - pgga | the resultingR? = 0.86 (7) is much greater than 0.6,
order to maintain both market and sector neutraiych  determined by a trailing window. The correspondapi-
neutrality is very important for investors becaifsprotects -\ \alue ofPredicted R® (10) is PR2(A1) = 0.53.

their investment in market downtums. Therefore, the proposed technique allowed us teeaeta

Fund monthly returns are shown in Figure 6. We g@alin- L A
) " much closer approximation of the fund return patteith a
pare performance of Sharpe’s RBSA and Dynamic Stylejgnificantly more realistic pattern of sector espres.

Analysis (DSA) in determining sensitivity of thenfdl returns

to economic sectors. Time Series of Sector Exposure - DSA

W Utilities
W Telecorm

B - ——— - FE n,d IVI gnihl,y? e;tujnf ,,,,,,,,,,,, B Techndogy
B Consumer, Nyl
W Industrial
O Hedlthcare

7o

W Financial

B Erergy

& Consumer, Cycl
W Basic Materials

Weight, %

Total Return, %

10 Dec/01 Dec/o2 Dec/03 Dec/o4 Dec/5
a8 Dec/o9 Dec/o1 Dec/03 Ded/6

Created with MPI Stylus™ (Data: Momingst:

Figure 8. DSA-estimated asset weights.
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Figure 6. Fund returns.

Therefore, the proposed technique allowed us teeaeta
much closer approximation of the fund return pattsith a
significantly more realistic pattern of sector espres.

! Laudus Rosenberg Value Long/Short (Ticker: BRMigG mutual
fund employing a strategy similar to a long-shatige fund. In-
formation on this fund is available on finance.yalcom and
Www.morningstar.com 2 Source: indexes.dowjones.com
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Figure 9. Selection of smoothness parameter.

9.2 Long Term Capital Management (LTCM)

The collapse of this highly-leveraged fund in 199&y
far the most dramatic hedge fund story to datethat be-
ginning of 1998, the $5B fund maintained leveraafiorof
about 28:1 [15,16,17]. LTCM troubles began in Mapd
1998. By the end of August, the fund had lost 5B¥the
end of September, 1998, a month after the Russiars,c
the fund lost 92% of its December 1997 assets.ifigp#ine
destabilizing impact of the highly leveraged furnd global
financial markets, on September 23rd, the FedeeskeRe
Bank of New York orchestrated a bailout of the funda
group of 14 major banks.

The investment strategies of the fund were basebebn
ting on spreads between thousands of closely ceksteuri-
ties in various global markets. Such bets are basethe
assumption that the securities will eventually enge and
the arbitrage position will result in a profit. fact, the
spreads continued to rise which eventually ledoltapse of
the fund. It took several major investigations luiding one
commissioned by President Clinton [16], to detelinat
major losses sustained by LTCM came from bets obail
credit spreads.

We will use DSA methodology to determine major dast
explaining losses of LTCM in 1998 using the fund’s
monthly returns. We will also determine the leveragtio,
an important risk factor which, according to puittid fig-
ures [15,16], had increased from 28:1 to 52:1 oWer
course of 1998. Fund’'s 1998 monthly returns in aaywu
August shown in Figure 10 were obtained from public
sources [17]. Daily or weekly returns, if availabieould
provide far greater accuracy.

10 LTCM Monthly Return, 1998
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Figure 10. LTCM monthly returns in 1998.

For our analysis we used the following indexes ated
by Lehman Brothers and Merrill Lynch: US Corporated
Government Long Bond Indices, European (EMU) Corpo-
rate and Government Bond Indices and US Mortgage-
Backed Securities Index. The result of the analisigre-
sented in the Figure 11. Asset exposuBesf the fund for

each time period are "stacked" along the Y-axigh whe
sum equal to 100%. The negative weights shown bétew
X-axis correspond to borrowed assets and reprdeeat-
age. Evidently, the leverage comes from crediteas —
both US (Corp Index vs. Govt Index) and EMU (Canpdx
vs. Govt Index). There’s also significant expostaévort-
gages. Our results show that the leverage inadefieen
35:1 (or 3,500%) to 45:1 (4,500%) during 1998, \khis
close to the figures published in [16,17].

The result corresponds to the optimal smoothnesffico
cient A which was selected to provide the maximum value
of the Predicted®’ statistic. The R? of this result is 0.99,
while Predictedr? is 0.98.

The “growth of $100” chart in Figure 12 showing ther-
formance of LTCM in 1998 presents an excellent rhditle
where the performance of the fund is very clospiyr@ximated
by the model. In chart, the “Total” line represethis fund and
the “Style” represents the model-based approximatio
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Figure 11. LTCM Estimated Asset Weiglfs.
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Figure 12. LTCM performance tracking.

Following Allen’s use of leave-one-out PRESS stitis
model selection [9], in Table 2 we use cross-véila



static Predicte®® (10), to illustrate “optimality” of the
result obtained in our analysis of the LTCM. In tiable,

we show the impact on Predictedl from either removal of
each of the model assets or adding new assetsowtssthat
the full model with 5 assets is preferable, hathng highest

PredictedR® equal to 0.98.

Table 2. Model selection in the LTCM analysis.

Max Predicted R
Asset Name Asset removed Asset added

EMU Corp Bonds 0.861

EMU Govt Bonds 0.857

US Gov Long Bonds 0

US Corp Long Bonds 0.839

Mortgages 0.965

European Stocks 0.948

US Small Stocks 0.977

We then computed monthly VaR (Value-at-Risk) corre-

sponding to asset exposures in Figure 11 usingydaos of
monthly returns on asset indices employed in ttedyars.
Depending on parameters of calculation (such aaydfsc-
tor, distribution assumptions, etc.), the 99% gysiic VaR
for June-August 1998 is in the 30%-55% range. Toeee
10-50% monthly losses sustained by the fund duthig
period should have been expected if proper VaR odeth
ogy was used. As it was mentioned above, applyiSé B
higher frequency data (daily or weekly) could hare-

duced much more accurate estimates of potentidy dai

losses.

9.3 Replicating a Hedge Fund Index

The purpose of this section is to demonstrate h&A D
methodology developed in previous sections could:ine
ployed to replicate the performance of a hedge &irategy
index using generic asset indices.

Most hedge fund database vendors publish perforenafhc

hedge fund strategy indices — weighted aggregdtésds
within groups representing similar investment siggt In-
dices representing category averages are readdijable
from a number of hedge fund database vertddétsr our
analysis we used monthly returns of the HFR Egdiégige
Index representing Long/Short category, which is ofithe
most representative. Below, we provide the debnitbf the
category from HFR website:

Equity Hedge investing consists of a core holding of long
equities hedged at all times with short sales of stocks and/or
stock index options. Some managers maintain a substantial
portion of assets within a hedged structure and commonly
employ leverage. Where short sales are used, hedged assets
may be comprised of an equal dollar value of long and
short stock positions. Other variations use short sales unre-
lated to long holdings and/or puts on the S&P 500 index
and put spreads. Conservative funds mitigate market risk by
maintaining market exposure from zero to 100 percent. Ag-
gressive funds may magnify market risk by exceeding 100

1 Among the most widely used: HFR (Hedge Fund Rebdar
www.hedgefundresearch.co@SFB/Tremont
www.hedgeindex.corEurekahedgeww.eurekahedge.com
and others.

percent exposure and, in some instances, maintain a short
exposure. In addition to equities, some funds may have lim-
ited assets invested in other types of securities.

The HFR Equity Hedge index represents an equal-
weighted composite of 615 funds within the categ&wen
though individual hedge funds engage in frequeaditg
and utilize derivatives, our contention is thattfre index,
specific risk is diversified and its returns coblel explained
by a handful of systematic factors. Since moshedige
funds in the category invest in equities, we usedfollow-
ing indices for our analysis: 6 Russell Equity beti (Top
200 Value/Growth, Midcap Value/Growth, Russell 2600
Small Cap Value/Growth) as proxies for US Equitiasd
MSCI EAFE Index as the proxy for international dups
and ADRs. We used Merrill Lynch 3-Month TBill indes
a proxy for cash. Monthly returns for 7 years JU809 —
June 2006 of both the hedge fund index and gersset
indices were used.

The results of DSA analysis (6) corresponding ® dip-
timal value of parametell is shown in Figure 13. The

quality of regression fit is very highR?= 0.98 andPre-
dicted R? = 0.90.
In Figure 14 we present values of criteriBR* (1) corre-

sponding to various values of coefficieAt plotted along
logarithmic X-axis. Note that the results in Figurg were

obtained using/ corresponding to the highdaR?(A) . The

analysis of exposure levels in Figure 13 presemtrsé in-
teresting observations. First, the average levetaga in
this category (as measured by the magnitude ot gxpo-
sures below the X-axis) is relatively small ancbktaNote
also that market exposure has increased dramgticeér
1995-1996 (especially to international equity méskepre-
sented by EAFE index), almost to year 2000 levels.
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Figure 13. Equity Hedge Index: DSA analysis
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Following described above “in-sample” replicatioitloe
Equity Hedge index, we used the same methodologgpe
licate the index “out-of-sample.” We used the figd
months of data July 1999 through June 2004 to ohétber
allocations to generic indices as of June 2004. thén
computed return for the replication portfolio ofngeic in-
dices for July 2004 using generic index returns Jaty
2004 and allocations estimated via DSA. We theraedpd
the estimation interval to include 61 months thiouyly
2004 and estimated replication portfolio return fargust
2004. We then repeated the process for each akthain-
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Figure 14. Equity Hedge Index: smoothness selection

ing months through June 2006.
In Figure 15 we show cumulative performance for thevariables are selected properly, changing the smess

HFR Equity Hedge Index and its “out-of-sample” rept
tion (“Benchmark”) for two years July 2004 — Jur@oag. It
is clear that index performance has been replicatag

closely.

Growth of $100
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In Figure 16 we compare allocations of both “in-géef\
DSA analysis of the Equity Hedge Index (equivalenthe
one in Figure 13) and allocations of its “out-ofrgde”
replication. Note that the latter starts only 60nths after
the start of the data sample and the asset wegtimhates

are
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Figure 15. Equity Hedge Index: performance replicat

more volatile than the former.
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Figure 16. Equity Hedge Index: exposures replicatio

10 Conclusions

The DSA approach has made it possible to fundarhenta
improve the existing RBSA methodology currently éogpd
in Finance. The proposed technique that implemexitting
quadratic optimization algorithms is very practiaatl can be
executed on a personal computer. We provide a frame
for truly dynamic analysis of hedge funds, resagltin in-
creased transparency and better due diligence whiabf
crucial importance for financial institutions today

However, application of DSA can achieve 100% fihgs
any explanatory variables by adjusting the smoathrpa-
rameter. These variables can be totally unrelaigte ana-
lyzed portfolio return. Moreover, even when explana

parameter can result in very different resultss ltherefore
required that this parameter is estimated from,dsaause
in most cases analysts don’'t have information abodter-
lying hedge fund positions and their dynamics.

Thus, there is a need to measure the model adequacy
Clearly, the coefficient of determinatioR® (7) is not suit-
able. Instead, the leave-one-out cross-validatiod Rre-
dicted R* approach solve both above-mentioned issues. We
demonstrated this using a model hedge fund pastfoli
Aside from its use in the parameter selection apohe
Predicted R? serves a measure of the model validity. Simi-
larly to the PRESS statistic that it is based boan be used
to select the best set of factors as the one prayithe
highest value of thBredicted R?.

A modification of the Kalman filter-smoother by mpo-
rating the leave-one-out procedure has allowedestape
the seemingly unavoidable loss of the linear coatpral
complexity with respect to the length of the tinegies.
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