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ABSTRACT  

In this paper, we review one of the most effective finan-
cial multi-factor models, called the Returns Based Style 
Analysis (RBSA), from the standpoint of its performance in 
detecting dynamic factor exposures of hedge funds using 
only fund performance data. We analyze the shortcomings 
of these models in capturing changes in a dynamic portfolio 
structure and lay the groundwork for a new approach, which 
we call Dynamic Style Analysis (DSA). The problem is 
treated as that of estimating a time-varying regression 
model of the observed time series with the inevitable neces-
sity to choose the appropriate level of model volatility, ranging 
from the full stationarity of instant models to their absolute 
independence of each other. We further propose an efficient 
method of model estimation and introduce a novel measure of 
the validity Predicted 2R  that is used to select the model 
parameters. Using both model and real hedge fund returns we 
illustrate the advantages of the proposed technique in analysis 
of hedge funds. 

KEYWORDS  

Style analysis of investment portfolios, hedge funds, time-
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1 Introduction      

Hedge fund industry has grown rapidly over the past dec-
ade to almost $1 trillion in assets and over 8,000 funds. At 
the same time, the amount of information on hedge funds 
available to investors is negligible as compared to tradi-
tional investment products such as mutual funds. In most 
cases, the only available information on a hedge fund is a 
time series of monthly returns and a vague description of 
the strategy. Returns are then analyzed using a variety of 
multi-factor models in order to detect the sensitivity of the 
hedge fund strategy to various risk factors (factor expo-
sures) as well as to explain the fund’s performance in the 
past. 

One of the most effective and practical multi-factor models 
for analyses of investment portfolios, called the Returns-
Based Style Analysis (RBSA), was suggested by Sharpe 
[1,2]. In the RBSA model, the periodic return of a portfolio is 
approximately represented by a constrained linear regression 
of a relatively small number of single factors whose role is 
played by periodic returns of generic market indices each of 
which represents a certain investment style or sector (market 
capitalization, quality, duration, region, etc.).  

In order to account for allocation changes in active portfolios, 
Sharpe used a moving window of some preset length [2], as-
suming that the structure of the portfolio is constant inside the 
window.  

                                                           
  This work is supported by the Russian Foundation for Basic Re-
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Fung and Hsieh [3] applied RBSA to hedge funds where the 
method was reduced to unconstrained linear regression to ac-
count for shorting and leverage typical for hedge fund strate-
gies. They note a significant loss of explanatory power of 
RBSA as compared to traditional investment products such as 
mutual funds (0.25 and 0.75 median 2R respectively). They 
conclude that such a low 2R  is due to dynamic nature of 
hedge fund strategies and introduce generic indices de-
signed to capture hedge fund dynamics, thus increasing me-
dian 2R  to 0.4 using the same static regression approach.  

In [4], Fung and Hsieh further explore the issue of non-
stationarity of RBSA and introduce a method to detect struc-
tural breakpoints in factor exposures to improve the 2R , but 
otherwise the allocations remain constant within the estimation 
window.  

As a generalization of the static RBSA model, we propose 
here a dynamic model in which a portfolio weights are con-
sidered as changing in time. The proposed approach, which 
we call Dynamic Style Analysis (DSA), consists in estimat-
ing a time-varying regression model of the observed time 
series of periodic returns of the portfolio and generic market 
indices. Time-varying regression has been subject of inten-
sive study in statistical and econometric literature during, at 
least, the recent fifteen years [5,6]. In this paper, we con-
sider the problem of estimating a time-varying regression 
model of a portfolio in its inevitable connection with the 
necessity to choose the appropriate level of volatility of results, 
ranging from the full stationarity of instant regression models 
to their absolute independence of each other. For choosing the 
volatility level, we use the leave-one-out principle widely 
adopted in Machine Learning [7,8].  

We illustrate the proposed approach to portfolio analysis by 
applying it to both model and real hedge fund strategies. 

2 Sharpe’s Returns Based Style Analysis and its 
limitations  

In Sharpe’s model, the periodic return on a portfolio ( )pr  
is being approximated by the return on portfolio of assets 
indices ( )ir  with weights (1) ( )( , ..., )nβ β  equal to fractions 
invested in each asset at the beginning of the period under 
the assumption that the entire budget is fully spent on the 
investment:  

 ( ) ( ) ( )

1

np i i

i
r r

=
≅ +∑α β . (1) 

In [2], Sharpe used this model to analyze performance of a 
group of US mutual funds and determined that a significant 
portion of a fund return can be explained by small number 
of assets. In order to estimate parameters of the model (1), 
Sharpe would take monthly returns on both the portfolio 

( ){ }p
tr  and asset indexes ( ){ }i

tr  for consecutive months 
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1, 2,3,...t =  and solve the following constrained quadratic 
optimization problem:  

( )2
(1) ( ) ( ) ( ) ( )

1 1

( ) ( )

1

ˆ ˆˆ( , , ..., ) : min,

0, 1.

N nn p i i
t tt i

ni i

i

r r
= =

=

 − − →

 ≥ =

∑ ∑

∑

α β β α β

β β
 

 (2) 

The resulting coefficients (1) ( )ˆ ˆ( , ..., )nβ β  help to identify the 
major factors determining portfolio performance.  

Further, recognizing that portfolio structure changes over 
time, Sharpe used a series of optimizations in moving win-
dows of a smaller length K  to determine the dynamics of 
portfolio factor exposures:  

( )21(1) ( ) ( ) ( ) ( )

0 1( ),
ˆ ˆˆ( , ,..., ) arg min .

K nn p i i
t t t t k t kk ii r r

−
− −= =

= − −∑ ∑α β
α β β α β

  (3) 
The model (2) became commonly adopted in the modern 

Finance under the name of Returns Based Style Analysis 
(RBSA). The main appeal of this method for practitioners is 
that it is based solely on analysis of portfolio returns and 
does not require any other, very often proprietary, informa-
tion about the portfolio composition.  

The two major factors contributing to such wide accep-
tance of RBSA are its ease of interpretation and stability of 
results. It is worth noting that both factors are the direct 
result of the presence of non-negativity constraints in (2). 
These constraints, being the major innovation in RBSA, 
provide important prior information about the analyzed 
portfolio, i.e., the fact that most of investment portfolios 
such as mutual funds don’t take short (negative) positions.  

Since its introduction in 1992, Sharpe’s model (1) has 
been criticized for its inability to capture an active portfo-
lio’s dynamics. Thus, because portfolio structure is assumed 
constant within estimation window, moving window tech-
nique (3) appears to be inadequate to capture rapid changes 
in portfolio structure.  

In addition, model (1) loses most of its advantages when it is 
applied to analysis of portfolios that are allowed to take 
short (negative) positions. In such cases, non-negativity 
constraints ( ) 0i ≥β  have to be dropped from (2), and the 
problem is reduced to a simple linear regression. In most such 
cases, due to multicolinearity effect, moving window method 
(3) produces highly unstable, meaningless results.  

The two limitations above make RBSA inapplicable for 
analysis of hedge funds because, unlike traditional investment 
vehicles such as mutual funds, hedge funds are extremely dy-
namic and take significant short positions.  

Most attempts to overcome these shortcomings of RBSA are 
limited to introduction of additional indices into the static 
model (1) to capture the specifics of a generic hedge fund 
strategy [3]. None of the methods available to date represent 
true dynamic model and, therefore, their explanatory power 
remains low.  

3 Limitations of RBSA: Dynamic model of a hedge 
fund  

We will illustrate the shortcomings of RBSA using a simple 
model of an equity long-short hedge fund. The long position of 
such a fund is created using Russell 1000 Value and Growth 
indices with weights following a sine-wave pattern as shown in 
Figure 1.  

The fund is invested 100% in the Russell 1000 Growth as 
of Jan-96 and then shifts assets into Russell 1000 Value 
with a relatively low 50% annual turnover. At any point of 
time the sum of both index weights is equal to 100%. We 
then create a long-short model portfolio (MP) by 100% 
hedging the long portfolio with S&P 500 Index, i.e., effec-
tively subtracting the index returns from the long portfolio 
return.  
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Model Portfolio Weights
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Figure 1. The long-short model portfolio.  

Next, we perform rolling 12-month window Sharpe’s 
RBSA (3) on the composite monthly return time series of 
the portfolio MP using, as regressors, the same three 
monthly indices that were used in its construction. The re-
sults are presented in Figure 2 where estimated allocations 
are stacked along the Y-axis. 
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Figure 2. Estimated model portfolio, 12-month trailing 

window.  

The results don’t materially change when we vary the 
window size. In Figure 3 we show results of rolling 24-
month window.  
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Estimated W eights - RBSA 24M Window
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Figure 3. Estimated model portfolio, 24 month trailing 

window.  

Although the turnover of the model portfolio is very low 
and the number of assets is very small, RBSA fails to ade-
quately identify the model. Since no noise was added to 
model portfolio returns, this provides clear indication that 
such poor model identification is the result of the window-
based approach and multicolinearity as noted in Section 2, 
rather than noise in data as it is usually assumed. In Table 1 
below we present the correlation matrix of assets used in 
construction of portfolio MP computed over the same 10-
year period using monthly returns. The numbers in brackets 
represent the range of correlations computed over rolling 
24-month windows.  

The dynamic model introduced further in this paper elimi-
nates shortcomings of Sharpe’s RBSA and makes it applicable 
to long-short strategies and hedge funds. 

 
Table 1. The correlation matrix of assets constituting the 

model portfolio.  

 R1000G R1000V S&P500 

R1000G 1.00   

R1000V 0.71 (0.27;0.95)  1.00  

S&P500 0.94 (0.88;0.99) 0.90 (0.67;0.99) 1.00 

 

4 Dynamic Style Analysis (DSA)  

In contrast to Sharpe’s static model (1), we propose here a 
model in which factor exposures of the portfolio are chang-
ing in time. Let 1, 2, ...,t N=  be a sequence of holding peri-
ods, for instance, days, weeks, months, quarters or years, 
and  

( , 1, ..., )tB t N= =ββββ , (0) (1) ( )( , , ..., )n
t t t t=ββββ β β β , ( )

0
1

n i
ti=

=∑ β , 

  
be the respective sequence of the portfolio’s exposures at 
the end of each period. The notation (0)

tβ  is reserved here 
for a short-term instrument, such as bank deposit in an in-
terest bearing account, often referred to as risk-free asset.  

For simplicity, we will express the model in terms of ex-
cess returns on the portfolio ( ) (0)( )p

t tr r−  and assets 
( ) (0)( )i

t tr r−  with respect to the return on the risk-free asset 
(0)

tr . Such an equivalent notation effectively eliminates the 

need for the budget constraint (0) ( )

1
1

n i
t ti=

+ =∑β β  in (1). 

The new dynamic model of periodic portfolio returns can be 
written as follows:  
 

( ) (0) ( ) ( ) (0) ( ) ( )

1 1
( ) ( )

n np i i i i T
t t t t t t t t t t t ti i

y r r r r x e e
= =

= − = − = + = +∑ ∑ xβββββ β
.(4) 
Here ( ) (0)( )p

t t ty r r= −  are known excess returns of the portfolio 

for each period t , and ( ) (0)( ), 1,...,i n
t t tr r i n = − = ∈ x R  are 

known vectors of observed excess returns of assets for these 
periods, whereas (1) ( )( , ..., )n n

t t t= ∈ββββ Rβ β  are vectors of time-
varying fractional asset weights to be estimated.  

The key element of the proposed Dynamic Style Analysis 
(DSA) is treating fractional asset weights as a hidden proc-
ess assumed a priori to possess the Markov property:  
 1t t t t−= +Vβ β ξβ β ξβ β ξβ β ξ , (5) 

where matrices tV  determine the assumed hidden dynamics 

of the portfolio structure, and tξξξξ  is the vector white noise, 
nonstationary in the general case.  

The equation (5) determines the state-space model of a dy-
namic system, while (4) plays the role of its observation model. 
In these terms, the DSA problem can be described as estimat-
ing the time-varying state of the respective dynamic system 

( )( , ) ( , ), 1, ...,tB Y X Y X t N= =ββββ  from observations 

( , )Y X =

( )( ) (0) ( ) (0)( , ) ( ),( ), 1, ..., , 1,...,p i
t t t t t ty r r r r i n t N = − − = = x .  

For estimating time-varying models of kind (4)-(5), we 
use the Flexible Least Squares approach (FLS) first intro-
duced in [5]. As applied to the DSA problem, the FLS crite-
rion has the form  

2
1 11 2

ˆ( , , ) arg min ( , 1,..., | , ),

( , 1,..., | , )

( ) ( ) ( ).

t

t

N NT T
t t t t t t t t t tt t

B Y X J t N Y X

J t N Y X

y − −= =

 = =
 = =
 − + − −∑ ∑x V U V

ββββ
ββββ

β β β β ββ β β β ββ β β β ββ β β β β

λ

λ

  (6) 

The assumed covariance matrices tQ  of white noise tξξξξ  in (5) 

occur here in the inversed form 1
t t

−=U Q . We shall additionally 

assume matrices tV  to be non-degenerate, in this case, they 
will determine also the reversed dynamics of the time-varying 
regression coefficients.  

The positive parameter λ  in (6) is responsible for the 
noise ratio in (4)-(5), i.e. for the level of smoothness of re-
gression coefficients. Thus, the smoothness parameter λ  
balances the two conflicting requirements: to provide close 
approximation of portfolio returns and, at the same time, to 
control the smoothness of asset weights tββββ  over time.  

5 The cross validation principle of estimating the 
smoothness parameter  

The FLS criterion (6) depends on a number of parameters. 
Matrices tV  and tU  of the transition model (5) can be de-
fined a priori, depending on the model of hidden dynamics 
of time-varying regression coefficients and the “style” of 
smoothing of their estimates. For example, matrix tV  can 
be defined as the unity matrix thus requiring simple smooth-
ness of estimates. Alternatively, we could allow for non-
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smoothness of asset weights by incorporating market-driven 
changes of weights into transition model (5) as follows:  

( )
( ) ( ) ( )1

1( ) ( )
1 11

1 i
i k it

t t tn k i
t tk

x

x

−
−

− −=

+
= +
∑

β β ξ
β

, 1, ...,i n= , 2, ...,t N= .   

As to the coefficientλ , it is extremely problematic to pre-
set its value a priori. At the same time, there is a deep speci-
ficity in estimating it from the observed time series.  

If the volatility parameter is given a certain value λ , the 
FLS estimate of time-varying regression coefficients (6) 

will be a function of it ( )ˆˆ( , , ) ( , , ), 1, ...,tB Y X Y X t N= =ββββλ λ . 
It is impossible to find an “appropriate” value of λ  by at-
tempting to additionally minimize the residual squares sum 

in (6) ( )2

11
ˆ ( , , ) min

N T
t t tt

y Y X−=
− →∑ xββββ λλ .  

Indeed, when → ∞λ , the second sum in (6) totally pre-
vails over the first sum, the values of the hidden process 
become functionally related to each other ˆ ( , , )t Y X =ββββ λ  

1
ˆ ( , , )t t Y X−V ββββ λ , and the model is reduced to a static regression. 

If, on the contrary, 0→λ , the instantaneous values are getting 

a priori independent, each estimate 1ˆ ( , , )t Y X−ββββ λ  is deter-
mined practically by only one current element of the time se-
ries ( , )t ty x , and the model will be “extremely” time-varying.  

Actually, the sought-for sequence of time-varying regres-
sion coefficients ( )( , , ) ( , , ), 1, ...,tB Y X Y X t N= =ββββλ λ  is a 

model of the observed time series ( , )Y X =  

( )( ) (0) ( ) (0)( , ) ( ),( ), 1, ..., , 1, ...,p i
t t t t t ty r r r r i n t N = − − = = x , and the 

choice of λ  is the choice of a class of models which would 
be most adequate to the data. A commonly used measure of 
regression model fit is its coefficient of determination 2R . 
This coefficient was computed by Sharpe in his work [2] as 
the proportion of the portfolio volatility explained by sys-
tematic exposures using the moving window technique (3). 
In terms of the FLS criterion (6), the coefficient of determi-
nation will be expressed as the ratio  

( ) ( )2 2
2

2 1 1 1

2 2

1 1

ˆ ˆ( ) ( ) ( )
1 .

( ) ( )

N N NT T
t t t t t t tt t t

N N

t tt t

y y y
R

y y

= = =

= =

− − −
= = −∑ ∑ ∑

∑ ∑

x xβ ββ ββ ββ βλ λ

(7) 
However, by decreasing λ , it is easy to drive 2R  up to 
100% and, at the same time, obtain highly volatile, mean-
ingless estimates of fractional asset weights ˆ ( , , )t Y Xββββ λ .  

The major reason for such inadequacy of the 2R  statistic 
is that it uses the same data set for both estimation and veri-
fication of the model. The Cross Validation method sug-
gested by Allen [9] under the name of Prediction Error Sum 
of Squares (PRESS) is aimed at overcoming this obstacle. 
According to this method, an observation is removed from 
the sample, the model is evaluated on the remaining obser-
vations, and the prediction error is calculated on the re-
moved observation. This procedure is then repeated for each 
observation in the sample, and the sum of squared errors is 
computed. The Cross Validation principle is widely adopted 
in data analysis [10,11], including pattern recognition, 

where it is known under the name of the “leave-one-out” 
procedure [8,12].  

As applied to verification of the accuracy of the FLS 
model, the essence of the Cross Validation principle can be 
explained as the idea to assess the adequacy of the given 
model by estimating the variance of the residual noise ( )D e  
in (4) and comparing it with the full variance of the goal 

variable 2

1
( ) (1 ) ( )

N

tt
D y N y

=
= ∑ . But, when computing the 

error at a time moment t , it is incorrect to use the estimate 
ˆ

tββββ  obtained by minimizing the criterion (6) with participa-
tion of the observation at this time moment ( , )t ty x . The 
CV principle leads to the following procedure that provides 
a correct estimate of the observation noise variance.  

In the full time series ( )1 1( , ), ..., ( , )N Ny yx x , single ele-

ments 1,...,t N=  are skipped one by one ( 1 1( , ), ...,y x  

)1 1 1 1( , ), ( , ), ..., ( , )t t t t N Ny y y− − + +x x x , each time by replac-

ing the sum ( )
2

1
( )

N T

t t tt
y

=
 − ∑ xββββ λ  in (6) by the truncated 

sum ( )
2

1,
( )

N T

s s ss s t
y= ≠
 − ∑ xββββ λ , and the optimal vector 

sequences ( ) ( )
1

ˆ ˆ( ,..., )t t
Nβ ββ ββ ββ β  are found, where the upper index 

( )t  means that the observation ( , )t ty x  was omitted when 
computing the respective estimate. For each t , the instanta-
neous squared prediction error is calculated using the re-

spective single estimate ( )
2

( ) ( )
Tt

t t ty − xββββ λ . The cross-

validation estimate of the noise variance is found as the 
average over all the local squared prediction errors  

 ( )
2

( )

1

1 ˆˆ ( | ) ( )
N T

t
CV t t t

t

D e y
N =

 = − ∑ xββββλ λ   (8) 

The less ˆ ( | )CVD e λ , the more adequate is the model with 
the given value of the smoothness parameter λ  to the ob-
served time series ( )1 1( , ), ..., ( , )N Ny yx x .  

The cross-validation estimate of the residual noise vari-
ance ˆ ( | )CVD e λ  can be further scaled to make it comparable 
across different analyzed portfolios. We suggest the cross-
validation statistic  

 2
ˆ ˆ( ) ( | ) ( | )

( ) 1
( ) ( )

CV CVD y D e D e
PR

D y D y

−
= = −

λ λ
λ .  (9) 

which we call Predicted R-squared. Note that it is computed 
similarly to the regression R-squared statistic (7).  

We suggest a method of determining optimal model pa-
rameters that consists in processing the given time series 
( )1 1( , ), ..., ( , )N Ny yx x  several times with different tentative 
values of λ . Each time, the model adequacy is assessed by 
the averaged squared prediction error (8) estimated by the 
cross validation procedure. The value ∗λ  that yields the 
maximum value of the cross-validation statistic (9) is to be 
taken as the smoothing parameter recommended for the 
given time series:  
 2arg max ( )PR∗ = λλ λ .  (10) 
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It should be noted that the selection of model parameters 
through minimizing the prediction error makes this method 
a version of the James-Stein estimator producing the small-
est prediction error [10].  

6 Kalman filter and smoother for minimization of 
flexible least squares and cross validation  

The FLS criterion (6) is a quadratic function, and its 
minimization leads to a system of linear equations. At the 
same time, it belongs to the class of so-called pair-wise 
separable optimization problems [13], in which the objec-
tive function is the sum of functions each depending on not 
more than two vector variables, in this case 1t −ββββ  and tββββ  
associated with immediately successive time moments. As a 
result, the matrix of the linear equation system relative to 
variables 1, ..., Nβ ββ ββ ββ β  will have block-threediagonal structure, 
which allows for easily solving it by the double-sweep 
method, which is a quadratic version of the much more gen-
eral dynamic programming method [13]. These equivalent 
algorithms are, in their turn, equivalent to the Kalman filter 
and smoother [14].  

First, the Kalman filter runs along the signal  
 ( )1|1 1 1 1 1

Ty= x x xββββ , 1|1 1 1
T=Q x x  at 1t = ,   

 1
| 1| 1 | 1| 1( )T

t t t t t t t t t t t t ty−
− − − −= + −V Q x x Vβ β ββ β ββ β ββ β β , 2, ...,t N= , (11) 

( )
( )

1 1
| 1| 1 1| 1

1 1
1| 1

(1 )

                                  (1 ) .

T T
t t t t t t t t t t t t t t

T
t t t t t t t

− −
− − − −

− −
− −

= + + =

+ +

Q x x U V V U V Q Q V

x x V Q V U

λ

λ
 (12) 

The intermediate vectors |t tββββ  and matrices |t tQ  are parame-

ters of the so-called Bellman functions | ( )t t tJ ββββ  being quad-
ratic in this case [14]:  

| 1 | | |

2
1 1 11 2

1 1,...,( ) min ( , ..., ) ( ) ( ) ,

( , ..., ) ( ) ( ) ( ).

T
t t t t t t t t t t t t t

t tT T
t t s s s s s s s s s ss s

t
J J const

J y − −= =

−
= = − − +

= − + − −∑ ∑

Q

x V U V

β ββ ββ ββ ββ β β β β β ββ β β β β β ββ β β β β β ββ β β β β β β

β β β β β β ββ β β β β β ββ β β β β β ββ β β β β β βλ
 
Here 1( , ..., )t tJ β ββ ββ ββ β  are partial criteria of the same structure as 

(6). The minimum points |t tββββ  of the Bellman functions yield the 
so-called filtration estimates of the unknown regression 
coefficients at current t  under the assumption that the time 
series is observed only up to point t .  

Then, the Kalman smoother runs in the backward direc-
tion 1, ...,1t N= − :  

 | 1 |
ˆ ˆ( )t t t t t t t+= + −Hβ β β ββ β β ββ β β ββ β β β ,  (13) 

( )
( )

1

1 1 1 | 1 1 1

11 1 1
1 1 1 |

( ) ( )

                                  (1 ) ( ) .

T T
t t t t t t t t t

T
t t t t t

−

+ + + + + +

−− − −
+ + +

= + =

+

H V U V Q V U V

I V U V Q

λ λ

λ
 (14) 

The resulting sequence is just the minimum point of the FLS 

criterion (6) ( )ˆˆ( , , ) ( , , ), 1, ...,tB Y X Y X t N= =ββββλ λ .  
To compute the leave-on-out estimate of the noise variance 

(8), we have to find the estimate of each regression coefficient 
vector ( ) ( )ˆ ( , , )t t

t Y Xββββ λ  from the time series ( ) ( )( , )t tY X =  

( )( , ), 1, ..., 1, 1,...,s sy s t t N= − +x  where the element ( , )t ty x  
is cut out. This means that, when running the Kalman filter, we 

have to use at step t  the matrix ( )
|
t

t t =Q  

( ) 11 1
| 1| 1 (1 )T

t t t t t t t t t

−− −
− −− = +Q x x V Q V Uλ  instead of |t tQ  (12).  

 

7 The Computational Complexity of DSA  

However, straightforward application of the cross valida-
tion principle (8)-(10) to determining value of the smooth-
ness parameter implies running the Kalman filtration-
smoothing procedure (11)-(14) N  times for each removed 
observation corresponding to time period t , which fact will 
destroy the linear computational complexity of the algo-
rithm with respect to the length of the time series N . Thus, 
to analyze 120N =  monthly returns of a portfolio using 

10n =  economic sectors as variables, it is required to solve 
a quadratic problem (6) with 1,200Nn =  variables, what can 
be easily done by the standard Kalman filter-smoother hav-
ing linear computational complexity with respect to N . But 
in order to compute the cross-validation statistic (9) corre-
sponding to a single value of the smoothness parameter, 

120N =  such optimizations are required, and computing the 
CV statistic on a grid of 20 values of this parameter requires 
solving 20 2,400N =  problems (6), i.e. 2,400 runs of the 
optimization procedure. 

To avoid repeated processing of the signal for each tenta-
tive value of λ , a technique of incorporating computation 
of the leave-one-out error (8) into the main dynamic pro-
gramming procedure is proposed in [14]. It is shown that 
the estimate ( )ˆ ( )t

tββββ λ  is determined by the expression  

 ( ) ( ) ( ) 0 1 0 0
| | |

ˆ ˆ( ) ( , , ) ( ) ( )t t t
t t t N t t N t N t tY X −= = − −Q Q Q Q ββ β ββ β ββ β ββ β βλ λ ,  

where matrices |t NQ  are to be additionally computed at the 

backward run of the Kalman smoother for 1, ...,1t N= −   

( ) 11 1 1 1
| 1 1| 1 | 1 1 1( ) ( )T T T

t N t t t N t t t t t t t

−− − − −
+ + + + + += + +Q H V Q V H Q V U Vλ ,   

starting with matrix |N NQ  found at the last step of the Kal-
man filter (12).  

8 Testing the DSA Approach: Dynamic model of a 
hedge fund  

We applied the DSA approach (6) to the model portfolio 
MP developed in Section 3 with the smoothness parameter 
λ  selected in accordance with (10). The result of such 
analysis is shown in Figure 4.  

In order to test sensitivity of the model to noise in data, 
we added an idiosyncratic white noise to the MP monthly 
returns in the amount of 20% of the MP volatility1. The 
resulting portfolio returns were analyzed, and the result cor-
responding to the maximum value of the CV statistic is 
shown in Figure 5. The result corresponds to the optimal 
smoothness parameter 0.2=λ  selected to provide the 
maximum value of the 2PR  statistic (10).  

                                                           
1 Since the standard deviation of MP monthly returns over 120 

months makes 1.08σ = , we applied white noise (0,0.22)N .  
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Figure 4. DSA approach – estimation of the model portfolio.  
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Figure 5. DSA approach – noisy model portfolio.  

9 Case Studies  

In this section, we present examples of the application of 
the dynamic multi-factor methodology developed in this pa-
per to real-life hedge funds. 

9.1 Laudus Rosenberg Value Long/Short Fund  
According to the fund prospectus, the Laudus Rosenberg 

Value Long/Short mutual fund1 was using computer models 
for buying underpriced US stocks and selling stocks short in 
order to maintain both market and sector neutrality. Such 
neutrality is very important for investors because it protects 
their investment in market downturns.  

Fund monthly returns are shown in Figure 6. We will com-
pare performance of Sharpe’s RBSA and Dynamic Style 
Analysis (DSA) in determining sensitivity of the fund returns 
to economic sectors.  
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Figure 6. Fund returns.  

                                                           
1 Laudus Rosenberg Value Long/Short (Ticker: BRMIX) is a mutual 

fund employing a strategy similar to a long-short hedge fund. In-
formation on this fund is available on finance.yahoo.com and 
www.morningstar.com  

For our analysis we used 10 indexes provided by Dow 
Jones Indexes2. The result of the analysis using a 36-month 
window RBSA (3) is presented on the Figure 7.  
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Figure 7. Results using RBSA in 36 month window.  

The result is very volatile and unrealistic with 2 0.60R =  

(7). Shortening the estimation window produces higher 2R  
value but much more volatile results.  

We then applied the DSA approach using the same return 
data and selected the optimal parameter λ  in accordance 
with (10). The resulting sector exposures are presented in 
Figure 8.  

In Figure 9 we present the values of criterion 2 ( )PR λ  
(10) corresponding to various λ  plotted along logarithmic 
axis and the optimal value of the smoothness parameter ∗λ . 
Even though the weights are much less volatile in Figure 8 
than the ones in Figure 7 obtained using 36-month rolling 
RBSA, the resulting 2 0.86R =  (7) is much greater than 0.6, 
determined by a trailing window. The corresponding opti-
mal value of Predicted 2R  (10) is 2 ( ) 0.53PR ∗ =λ .  

Therefore, the proposed technique allowed us to achieve a 
much closer approximation of the fund return pattern with a 
significantly more realistic pattern of sector exposures.  
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Figure 8. DSA-estimated asset weights.  

Therefore, the proposed technique allowed us to achieve a 
much closer approximation of the fund return pattern with a 
significantly more realistic pattern of sector exposures.  

                                                           
2 Source: indexes.dowjones.com  
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Figure 9. Selection of smoothness parameter.  

9.2 Long Term Capital Management (LTCM) 
The collapse of this highly-leveraged fund in 1998 is by 

far the most dramatic hedge fund story to date. At the be-
ginning of 1998, the $5B fund maintained leverage ratio of 
about 28:1 [15,16,17]. LTCM troubles began in May-June 
1998. By the end of August, the fund had lost 52%. By the 
end of September, 1998, a month after the Russian crisis, 
the fund lost 92% of its December 1997 assets. Fearing the 
destabilizing impact of the highly leveraged fund on global 
financial markets, on September 23rd, the Federal Reserve 
Bank of New York orchestrated a bailout of the fund by a 
group of 14 major banks.  

The investment strategies of the fund were based on bet-
ting on spreads between thousands of closely related securi-
ties in various global markets. Such bets are based on the 
assumption that the securities will eventually converge and 
the arbitrage position will result in a profit. In fact, the 
spreads continued to rise which eventually led to collapse of 
the fund. It took several major investigations, including one 
commissioned by President Clinton [16], to determine that 
major losses sustained by LTCM came from bets on global 
credit spreads.  

We will use DSA methodology to determine major factors 
explaining losses of LTCM in 1998 using the fund’s 
monthly returns. We will also determine the leverage ratio, 
an important risk factor which, according to published fig-
ures [15,16], had increased from 28:1 to 52:1 over the 
course of 1998. Fund’s 1998 monthly returns in January-
August shown in Figure 10 were obtained from public 
sources [17]. Daily or weekly returns, if available, would 
provide far greater accuracy.  

Created with MPI Stylus™

LTCM Monthly Return, 1998

-60

-50

-40

-30

-20

-10

0

10

T
ot

al
 R

et
ur

n,
 %

01/98 02/98 03/98 04/98 05/98 06/98 07/98 08/98

 
Figure 10. LTCM monthly returns in 1998.  

For our analysis we used the following indexes provided 
by Lehman Brothers and Merrill Lynch: US Corporate and 
Government Long Bond Indices, European (EMU) Corpo-
rate and Government Bond Indices and US Mortgage-
Backed Securities Index. The result of the analysis is pre-
sented in the Figure 11. Asset exposures tββββ of the fund for 

each time period are "stacked" along the Y-axis, with the 
sum equal to 100%. The negative weights shown below the 
X-axis correspond to borrowed assets and represent lever-
age. Evidently, the leverage comes from credits spreads – 
both US (Corp Index vs. Govt Index) and EMU (Corp Index 
vs. Govt Index). There’s also significant exposure to Mort-
gages.  Our results show that the leverage increased from 
35:1 (or 3,500%) to 45:1 (4,500%) during 1998, which is 
close to the figures published in [16,17]. 

The result corresponds to the optimal smoothness coeffi-
cient λ  which was selected to provide the maximum value 
of the Predicted 2R statistic. The 2R of this result is 0.99, 
while Predicted 2R  is 0.98. 

The “growth of $100” chart in Figure 12 showing the per-
formance of LTCM in 1998 presents an excellent model fit, 
where the performance of the fund is very closely approximated 
by the model. In chart, the “Total” line represents the fund and 
the “Style” represents the model-based approximation.  
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Figure 11. LTCM Estimated Asset Weights tβ .  
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Figure 12. LTCM performance tracking.  

Following Allen’s use of leave-one-out PRESS statistic in 
model selection [9], in Table 2 we use cross-validation 
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static Predicted 2R  (10), to illustrate “optimality” of the 
result obtained in our analysis of the LTCM. In the table, 
we show the impact on Predicted2R  from either removal of 
each of the model assets or adding new assets. It shows that 
the full model with 5 assets is preferable, having the highest 
Predicted 2R equal to 0.98.  

 
Table 2. Model selection in the LTCM analysis.  

Max Predicted 2R  Asset Name 
Asset removed Asset added 

EMU Corp Bonds 0.861  
EMU Govt Bonds 0.857  
US Gov Long Bonds 0  
US Corp Long Bonds 0.839  
Mortgages 0.965  
European Stocks  0.948 
US Small Stocks  0.977 

 
We then computed monthly VaR (Value-at-Risk) corre-

sponding to asset exposures in Figure 11 using two years of 
monthly returns on asset indices employed in the analysis. 
Depending on parameters of calculation (such as decay fac-
tor, distribution assumptions, etc.), the 99% systematic VaR 
for June-August 1998 is in the 30%-55% range. Therefore, 
10-50% monthly losses sustained by the fund during this 
period should have been expected if proper VaR methodol-
ogy was used. As it was mentioned above, applying DSA to 
higher frequency data (daily or weekly) could have pro-
duced much more accurate estimates of potential daily 
losses.  

9.3 Replicating a Hedge Fund Index  
The purpose of this section is to demonstrate how DSA 

methodology developed in previous sections could be em-
ployed to replicate the performance of a hedge fund strategy 
index using generic asset indices. 

Most hedge fund database vendors publish performance of 
hedge fund strategy indices – weighted aggregates of funds 
within groups representing similar investment strategy. In-
dices representing category averages are readily available 
from a number of hedge fund database vendors1. For our 
analysis we used monthly returns of the HFR Equity Hedge 
Index representing Long/Short category, which is one of the 
most representative. Below, we provide the definition of the 
category from HFR website:  

Equity Hedge investing consists of a core holding of long 
equities hedged at all times with short sales of stocks and/or 
stock index options. Some managers maintain a substantial 
portion of assets within a hedged structure and commonly 
employ leverage. Where short sales are used, hedged assets 
may be comprised of an equal dollar value of long and 
short stock positions. Other variations use short sales unre-
lated to long holdings and/or puts on the S&P 500 index 
and put spreads. Conservative funds mitigate market risk by 
maintaining market exposure from zero to 100 percent. Ag-
gressive funds may magnify market risk by exceeding 100 

                                                           
1 Among the most widely used: HFR (Hedge Fund Research) 

www.hedgefundresearch.com, CSFB/Tremont 
www.hedgeindex.com, Eurekahedge www.eurekahedge.com, 
and others. 

percent exposure and, in some instances, maintain a short 
exposure. In addition to equities, some funds may have lim-
ited assets invested in other types of securities. 

The HFR Equity Hedge index represents an equal-
weighted composite of 615 funds within the category. Even 
though individual hedge funds engage in frequent trading 
and utilize derivatives, our contention is that in the index, 
specific risk is diversified and its returns could be explained 
by a handful of systematic factors.  Since most of hedge 
funds in the category invest in equities, we used the follow-
ing indices for our analysis: 6 Russell Equity Indices (Top 
200 Value/Growth, Midcap Value/Growth, Russell 2000 – 
Small Cap Value/Growth) as proxies for US Equities, and 
MSCI EAFE Index as the proxy for international equities 
and ADRs. We used Merrill Lynch 3-Month TBill index as 
a proxy for cash. Monthly returns for 7 years July 1999 – 
June 2006 of both the hedge fund index and generic asset 
indices were used.  

The results of DSA analysis (6) corresponding to the op-
timal value of parameter λ  is shown in Figure 13. The 
quality of regression fit is very high: 2R = 0.98 and Pre-
dicted 2R = 0.90.  

In Figure 14 we present values of criterion 2 ( )PR λ  corre-
sponding to various values of coefficient λ  plotted along 
logarithmic X-axis. Note that the results in Figure 13 were 
obtained using λ corresponding to the highest 2 ( )PR λ . The 
analysis of exposure levels in Figure 13 present several in-
teresting observations. First, the average leverage level in 
this category (as measured by the magnitude of short expo-
sures below the X-axis) is relatively small and stable. Note 
also that market exposure has increased dramatically over 
1995-1996 (especially to international equity markets repre-
sented by EAFE index), almost to year 2000 levels.  
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Figure 13. Equity Hedge Index: DSA analysis  
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Figure 14. Equity Hedge Index: smoothness selection.  

Following described above “in-sample” replication of the 
Equity Hedge index, we used the same methodology to rep-
licate the index “out-of-sample.” We used the first 60 
months of data July 1999 through June 2004 to determine 
allocations to generic indices as of June 2004. We then 
computed return for the replication portfolio of generic in-
dices for July 2004 using generic index returns for July 
2004 and allocations estimated via DSA. We then expanded 
the estimation interval to include 61 months through July 
2004 and estimated replication portfolio return for August 
2004. We then repeated the process for each of the remain-
ing months through June 2006.  

In Figure 15 we show cumulative performance for the 
HFR Equity Hedge Index and its “out-of-sample” replica-
tion (“Benchmark”) for two years July 2004 – June 2006. It 
is clear that index performance has been replicated very 
closely.  
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Figure 15. Equity Hedge Index: performance replication  

 
In Figure 16 we compare allocations of both “in-sample” 

DSA analysis of the Equity Hedge Index (equivalent to the 
one in Figure 13) and allocations of its “out-of-sample” 
replication. Note that the latter starts only 60 months after 
the start of the data sample and the asset weight estimates 
are more volatile than the former. 
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Figure 16. Equity Hedge Index: exposures replication.  

10 Conclusions  

The DSA approach has made it possible to fundamentally 
improve the existing RBSA methodology currently employed 
in Finance. The proposed technique that implements existing 
quadratic optimization algorithms is very practical and can be 
executed on a personal computer. We provide a framework 
for truly dynamic analysis of hedge funds, resulting in in-
creased transparency and better due diligence which is of 
crucial importance for financial institutions today.  

However, application of DSA can achieve 100% fit using 
any explanatory variables by adjusting the smoothness pa-
rameter. These variables can be totally unrelated to the ana-
lyzed portfolio return. Moreover, even when explanatory 
variables are selected properly, changing the smoothness 
parameter can result in very different results. It is therefore 
required that this parameter is estimated from data, because 
in most cases analysts don’t have information about under-
lying hedge fund positions and their dynamics.  

Thus, there is a need to measure the model adequacy. 
Clearly, the coefficient of determination 2R  (7) is not suit-
able. Instead, the leave-one-out cross-validation and Pre-
dicted 2R  approach solve both above-mentioned issues. We 
demonstrated this using a model hedge fund portfolio. 
Aside from its use in the parameter selection above, the 
Predicted 2R  serves a measure of the model validity. Simi-
larly to the PRESS statistic that it is based on, it can be used 
to select the best set of factors as the one providing the 
highest value of the Predicted 2R .  

A modification of the Kalman filter-smoother by incorpo-
rating the leave-one-out procedure has allowed us to escape 
the seemingly unavoidable loss of the linear computational 
complexity with respect to the length of the time series.  
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