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Abstract 
 
The problem of finding the most appropriate subset of 

features or regressors is the generic challenge of Machine 
Learning problems like regression estimation or pattern 
recognition. We consider the problem of time-varying 
regression estimation, which implies also the inevitable 
necessity to choose the individual appropriate levels of 
model volatility in each of regressors, ranging from the 
full stationarity of instant models to their absolute inde-
pendence in time. The problem is considered from the 
Bayesian point of view as that of estimating the sequence 
of regression coefficients associated with the hidden 
vector state of a stochastic linear dynamic system, whose 
a priori model includes parameters responsible for both 
the size of the subset of active regressors and the time-
volatility factors of regression coefficients at them. The 
proposed technique of adaptive time varying regression 
estimation is built as that of estimating both the state 
and parameters of the hidden state-space model.  

 

1. Introduction 
 
The most challenging aspect of the problem of regres-

sion estimation :ty T   in some set of observations 

t T  is, perhaps, the choice of an appropriate subset 

Î I  of the available set of features { , }i

tx i I  [1]: 
( )( , 1,..., )i

t ty f x i n  . The kernel-based approach to 

estimating dependences, which embeds a set of entities 
of arbitrary kind into a hypothetical linear space, wipes 
out the difference not only between numerical features 
and more complex modalities of object representation, 
but also between linear and nonlinear models [2], so that 
it becomes enough to consider only former of them:  

 ( ) ( )

1

n i i T

t t t t ti
y x e e


     x  ,  (1) 

However, in many applications, the set of observa-
tions t T  has to be treated rather as a succession 

 1,...,T N  than a plain set. In most cases, the succes-

sion of observations is associated with discrete time, 
when the stationary regression model (1) turns out to be 

insufficient. Therefore, the problem of estimating a time-
varying regression model  

 ( ) ( )

1

n i i T

t t t t t t ti
y x e e


     x  ,  (2) 

in which it is required to estimate the succession of re-
gression coefficients ( , 1,..., )tB t N  , has been sub-

ject of intensive study in statistical literature during, at 
least, the recent fifteen years [3,4].  

The number of variables in model (2) to be estimated 
ever exceeds the number of observations. Thus, it is im-
possible to estimate the time-varying regression model 
without additional regularization, namely, without taking 
some a priori assumptions on the hidden sequence of 
regression coefficients. The way of regularization is sug-
gested by practice.  

First, it is typical for the majority of practical situa-
tions that the initially assumed set of regressors is much 
greater than the actual set, so that the majority of regres-
sion coefficients are equal to zero. So, the challenge of 
regressor selection remains actual for the nonstationary 
regression model, and, for this reason alone, the problem 
of time-varying regression estimation falls into the compe-
tence area of Machine Learning.  

Second, it is typical that only a small number of re-
gression coefficients are changing in time, whereas the 
majority of them remain constant. If we new the names 
of regressors having constant coefficients, we could dras-
tically reduce the actual number of variables to be esti-
mated. Finally, the hidden regression coefficients are 
changing sufficiently smoothly in time. If the assumed 
degree of this smoothness is sufficiently high, the effec-
tive freedom of search will be essentially reduced.  

In this paper, we propose a procedure that automati-
cally estimates the subset of active regressors, finds, 
among them, regressors with actually changing coeffi-
cients, and estimates the individual time-volatility levels 
for these coefficients.  

 

2. Flexible Least Squares criterion of time-
varying regression estimation 

 
The problem of nonstationary regression estimation 

(2) has been intensively studied in the literature. The 
standard means of estimating time-varying models of this 
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kind is the Flexible Least Squares approach (FLS) first 
introduced in [3]:  

 
2

( ) ( ) ( )

ˆ1

( ) ( ) 2

1
ˆ2

ˆ ˆ( , 1,..., , | , )

                    ( ) min.

N
i i i

t t t t

i i I
N

i i

t t

t i I

J t N i I I y x

                

 



 

       

   

 


 (3) 

The subset of regressors Î I  and coefficient   are 

the parameters of this criterion. The first term 

 
2

( ) ( )

1 1

N n i i

t t tt i
y x

 
    of the FLS criterion (3) stands 

for the approximation of the observations 
ty . As to the 

second term 
( ) ( ) 2

11 1
( )

n N i i

t ti t  
    , it is responsible 

for the oveall time-volatility of regression coefficients. 
The greater value of 0   the “smoother” are the esti-

mated asset weights 
t  in time and the smaller is the 

actual “dimension” of the problem. If  , the crite-

rion (3) turns into the plain least squares method 

1
ˆ ˆ...i i

N   .  

The key element of the FLS criterion is treating the 
regression coefficients as independent hidden processes 
assumed a priori to possess the Markov property 

( ) ( ) ( )

1

i i i

t t t    , where ( )i

t  are independent normal 

white noises with zero mathematical expectations 
( ) ) 0i

tE   and variances    ( ) 2 2)i

t tE E e  .  

Minimization of criterion (3) is equivalent to solving 
the system of linear equation of very high dimension 

ˆ| |N I . The FLS criterion (3) is a quadratic function of 

the variables ( , 1,..., )t t N  with block-tridiagional ma-

trix, so, finding its minimum point is provided by the 
double-sweep method applied to the respective system of 
linear equations. The resulting algorithm is completely 
equivalent, on the one hand, to a continuous version of 
the dynamic programming procedure, and, on the other 
hand, to the Kalman-Bucy filter-smoother [3,5]. These 
three equivalent procedures have the linear computation-
al complexity with respect to the number of vector va-
riables, what is of great importance for time series analy-
sis, because the length of the observable time series 

 ( , ) ( , ), 1,...,t tY X y t N x  is often not fixed.  

As a rule, it is impossible to choose the appropriate 

subset Î I  and the appropriate value of the smooth-
ness parameter   a priori.  

 

3. Adaptive Flexible Least Squares criterion 
 
In this paper, we propose a modification of the FLS 

criterion (3) which we call the adaptive FLS. This adap-
tive criterion allow first, to automatically choose the sub-
set of best regressors, second, select among them the 
subset of regressors with really changing coefficients, 
and, third, determine the volatility parameter  for the 

changing regression coefficients.  

Let ( , 1,..., )t t Nx , ( )( , 1,..., )i

t tx i n x , be a giv-

en sequence of regressors not subject to any probabilistic 
modeling. We consider the time series to be processed 

( , 1,..., )ty t N  (2) as the observable part of a two-

component random process, whose hidden part is the 
unknown sequence of time-varying regression coeffi-

cients  ( )( , 1,..., ), 0,1,...,i

t t i n t N    . The main 

point of the regressors selection technique we propose 
here is the a priori probabilistic model of the hidden ran-
dom sequence of regression coefficients 

( )( , 1,..., )i

t t i n   . First, its components are consi-

dered as a priori independent. Second, the values of the 
regression coefficients are formed by the identical auto-
regression models  

  
( )

( ) ( ) ( )

1( ) ( )

i
i i i

t t ti i 
    

  
,  

where 
( )i

t  are independent normal white noises with 

zero mathematical expectations ( ) ) 0i

tE   and va-

riances  
( ) ( )

( ) 2

( ) ( )
)

i i
i

t i i
E   

  
.  

The auxiliary variables ( ) 0i   and ( ) 0i   perform 

the function of adaptation. If ( ) 0i   then 

 ( ) 2) 0i

tE   , and the sequence of regression coeffi-

cients at the i -th regressor will remain constant 1

i i

t t    

with some a-priori unknown value. If ( ) 0i   then 

 ( ) 2) 0i

tE    together with ( ) ( ) ( )( ) 0i i i     , and 

the i -th sequence of regression coefficients turns into 

the zero constant. The nonzero variables ( )i  form the set 

of relevant regressors ˆ { : 0}iI i   , and the nonzero 

variables ( )i  extract from them the subset of nonstatio-

nary regression coefficients ( )

var
ˆ { , 0}iI i I    . The 

product of noise variances ( ) 2)i

tE  at all the regressors 

defines the volume of the concentration ellipsoid for the 

random vector ( )( , )i

t  i I  . If this volume tends to zero, 

the random deviations of all the regression coefficients 
from each other and from zero are decreasing.  

The variables ( )i  и ( )i  control only the ratio be-
tween time volatility levels of different regression coeffi-
cients but do not affect the general time-volatility level of 
the model. This fact leads to the necessity to fix the vo-

lume of the concentration ellipsoid 
( ) ( )

( ) ( )
1

i i

i ii I

  
  

 . 

The general time volatility is specified by the observation 
noise variance in the model of nonstationary regression 

(2) ( ) 0tE e  ,  2( )tE e   .  

So, we have defined, first, the conditional a priori dis-
tribution of the hidden sequence of regression coeffi-

cients ( ) ( )

0 1( , ,..., | , , )i i

N    i I       and, second, the 

conditional distribution of the observed time series 



1 1( ,..., | ,..., , )N Ny y   . It is clear that the a posteriori 

joint distribution density of the hidden vector sequence 
of regression coefficients and variances of their compo-
nents related to single regressors will be proportional to 
the product  

( ) ( )

0 1 1

( ) ( )

1 1 0 1

( , ,..., , , , | ,..., , )

( ,..., | ,..., , ) ( , ,..., | , , ).

i i

N N

i i

N N N

P    i I y y

y y    i I

    

     

  

    
   

It appears natural to take the maximum point of this a 
posteriori density as the estimate of the sequence of time-
varying regression coefficients along with the variances 
indicating participation of each of regressors in the mod-
el:  

( ) ( )

0 1
( ) ( )

0 1 1

ˆ ˆ ˆ ˆ ˆ( , ,..., , , , | )

argmax ( , ,..., , , , | ,..., , ).

i i

N
i i

N N

   i I

                P    i I y y

    

   

  

  
 (4) 

Theorem. The maximum point of the a posteriori 

density (4) by ( ) ( )

0 1( , ,..., , , , )i i

N    i I      is the mini-

mum point of the criterion  

 

 
2( ) ( ) ( )

1
2

( ) ( ) ( )
( ) ( )

1( ) ( ) ( ) ( )

2
( ) ( )

( ) ( )

( , 1,..., , , , | )

  min,

1.

N
i i i

t i i t t t

i i I

N i i i
i i

t ti i i i

t i I
i i

i ii I

J t N i I y x
 



 



         

         
     

  
  

 





 (5) 

In contrast to (3), the adaptive FLS is applied to the 

whole set of regressors I .  

As we see, if the parameters ( ) ( )( , , )i i   i I    are 

fixed, the resulting criterion practically coincides with 
the FLS criterion (3).  

However, the presence of the additional variables 
( ) ( )( , , )i i   i I    is extremely important. If some 

( ) 0i  , the criterion drastically penalizes the deflec-
tion of the entire sequence of the respective time-varying 

regression coefficient ( ) ( ) ( )

0 1( , ,..., )i i i

N    from zero, and 

practically excludes the i th regressor from the model. If 

some ( ) 0i  , the neighboring values of the hidden 
process are practically equal to each other, and the i th 
regression coefficient is almost constant in time.  

 

4. The iterative minimization procedure 
 
For finding the minimum point of the modified FLS 

criterion (5) with the fixed structural parameter  , we 

apply the Gauss-Seidel iteration to both groups of va-

riables 0 1( , ,..., )N    and ( ) ( )( , , )i i   i I    starting with 

the initial values ( ),0 ( ),0( , , 1,..., )i i i n   .  

At each iteration, the current approximations 
( ), ( ),( , , )i k i k i I    turn (5) into the usual FLS criterion 

(3) with respect to the regression coefficients 

0 1( , ,..., )k k k

N   , which can be easily minimized by the 

standard Kalman-Bucy filter and smoother [6]. Once the 
regression coefficients are found, the next values of the 

variances ( ), ( ),( , , )i k i k i I    are defined by the following 

expression which is easy to prove:  

 

( ). 1
( ). 1 ( ). 1

( ). 1

( ), ( ). 1 ( ), 2

1( ). 1 2

( ). 1
( ), ( ). 1 ( ), 2

12

,
1

( )1
,

( )

i k
i k i k

i k

N i k i k i k

t ti k t

i k N l k l k l k

t tl I t

a

a

a

a a


 





 




 

  


  
 

   
 



 

 

where   

 

( ), ( ),

1( ). 1 2
0 1( ), 2

12

0 1

0 ( , , ) 1,
( )

0 1.

N i k i k

t ti k t

N i k

tt

a a a

a a

 



 
  



  



  

These two steps are repeated until the iterative process 
converges. It takes usually not more than ten iterations.  

The important property of proposed procedure is 

quickly tending to zero values ( ), ( )ˆ 0i k i    the ma-

jority of parameters ( ),i k . As a result, the estimation 
algorithm suppresses redundant regressors. In addition, 

the majority of coefficients ( ),i k  tend to zero values, 

too, ( ), ( )ˆ 0i k i   . This means that the estimation 
algorithm tries to interpret as many regression coeffi-
cients as constant in time, and to explain the output vari-
able by a few number of remaining regression coeffi-
cients which are actually time-varying.  

For finding the appropriate values of the structural pa-
rameter  , the leave-one-out cross-validation technique 

described in [6] is to be applied.  
 

5. Case study: Reverse-engineering of an 
investment portfolio  

 
In this section, we discuss a practical problem which is 

concerned with the necessity of intelligent time-varying 
regression estimation which includes, first, regressor selec-
tion and, then, further selection of regressor having nonsta-
tionary coefficients. This is the problem of recovering, 
from publicly available data, the time-varying structure of 
an investment portfolio, which is usually strongly hidden 
from public. A typical example of an investment company 
is a hedge fund, which accumulates money of common 
people with the purpose of saving it from devaluation.  

Let the capital of an investment company be fully in-
vested in n  financial instruments or securities (stocks, 
bonds, currencies, etc.) in proportions denoted by coeffi-
cients, which are changing in time and are unknown. These 
coefficients are just the subject of public interest. What is 
observed is only the periodic information (daily, weekly, 
quarterly, monthly) on the so-called return of the invest-
ment company, namely, the sequence of relative changes 
in the portfolio’s monetary volume. Each company is ob-
liged to report this information to governmental institu-
tions, whereas the volume itself remains secret.  

It can be proved that, under some additional financial 
assumptions [7], the sequence of periodic returns of an 
investment company is linear combination of daily returns 



of assets in which the capital is invested. The time-varying 
coefficients of this linear combination have the sense of 
proportions of capital sharing between the kinds of assets. 
So, we come to the problem of time-varying regression 
estimation.  

As a rule, the set of assets in which the capital is actual-
ly invested is essentially smaller than the set of all potential 
assets. So, it is strongly required to find the subset of re-
gressors with non-zero regression coefficients. In addition, 
managing an investment portfolio is usually performed 
through trading a few number of assets, whereas the other 
kinds of assets remain untraded. Thus, the problem of find-
ing the time-varying regression coefficients in contrast to 
time-constant ones is of extreme importance here.  

In this Section, we present an example of applica-
tion of the proposed methodology to a real-life portfolio, 
namely, Long Term Capital Management (LTCM).  

The collapse of this hedge fund in 1998 is by far the 
most dramatic hedge fund story to date. LTCM’s 
troubles began in May-June 1998 [8]. By the end of Sep-
tember 1998, a month after the Russian crisis, the fund 
had lost 92% of its December 1997 assets. Applying 
Adaptive Nonstationary Analysis to monthly returns of 
the fund, we attempted to determine major factors ex-
plaining the fall of LTCM. For our analysis, we used the 
returns of assets classes in which the LTCM’s capital can 
be invested. These returns values are provided by Leh-
man Brothers and Merrill Lynch. 

We varied the smoothness parameter   in the in-

terval from the minimum value 810 0   , which is 

equivalent to absolute independence of instant models, to 

the maximum value 810   providing full stationarity. 

For each value of  , we applied the iterative procedure 

proposed in section 4 to the given time series. Applica-
tion of the leave-one-out cross-validation technique of 
finding the optimal smoothness parameter   gave the 

value 10  .  

The respective result is shown in Figure 1. Asset 

exposures (1) ( )( ,..., )n

t t   for each time period are 

"stacked" along the vertical axis with respect to the sign. 
The negative positions correspond to hedge or, in other 
words, debt capital. What is especially important here is 
the fact that the proposed algorithm suppressed the re-
dundant assets and, as it is well seen, only 8 of 18 initial 
regressors occur in the final model.  

Another important aspect is the fact that 7 of 8 re-
maining assets weights are estimated as almost complete-
ly stationary. The only weight recognized as time-
varying corresponds to the fund’s capital share invested 
in ML Emerging Bonds, the government bonds from 
developing financial markets, including Russian short-
term treasury government bonds (the so-called ГКО in 
the Russian abbreviation). So, our analysis suggests the 
hypothesis that the crash of LTCM could be due just to 
the price drop of the Russian government bonds in July-
August 1998.  
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Figure 1. Adaptive nonstationary analysis of the 
LTCM fund.  
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