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Abstract. The featureless pattern recognition methodology based on measuring 
some numerical characteristics of similarity between pairs of entities is applied 
to the problem of protein fold classification. In computational biology, a com-
monly adopted way of measuring the likelihood that two proteins have the same 
evolutionary origin is calculating the so-called alignment score between two 
amino acid sequences that shows properties of inner product rather than those 
of a similarity measure. Therefore, in solving the problem of determining the 
membership of a protein given by its amino acid sequence (primary structure) 
in one of preset fold classes (spatial structure), we treat the set of all feasible 
amino acid sequences as a subset of isolated points in an imaginary space in 
which the linear operations and inner product are defined in an arbitrary un-
known manner, but without any conjecture on the dimension, i.e. as a Hilbert 
space.  

1 Introduction 

The classical pattern recognition theory deals with objects represented in a finite-
dimensional space of their features that are assumed to be defined in advance, before 
real objects subject to classification are observed. The emphasis on the feature-based 
representation of objects is reflected in the name of the most popular method of ma-
chine learning for pattern recognition called the support vector method [1,2].  

At the same time, there exists a wide class of applications in which it is easy to eva-
luate some numerical characteristics of pairwise relationship between any two objects, 
but it is hard to indicate a set of rational individual attributes of objects that could 
form the axis of a feature space. 

As an alternative to the feature-based methodology, R. Duin and his colleagues 
[3,4,5] proposed a featureless approach to pattern recognition, in which objects are 
assumed to be represented by appropriate measures of their pairwise similarity or 
dissimilarity. It is just this idea we use here as a basis for creating techniques of pro-
tein fold class recognition, i.e. allocating a protein, given by the primary chemical 
structure of its polymerous molecule as a sequence of amino acids (to be exact, their 
residues) from the alphabet of 20 amino acids existing in nature, over a finite set of 
typical spatial structures, each associated with a specific manner in which the primary 
amino acid chains fold in space under a highly complicated combination of numerous 
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physical forces [6,7]. We lean here upon the compactness hypothesis that is unders-
tood as the tendency of proteins with “similar” amino acid chains to belong to the 
same fold class [8]. 

It is common practice in computational biology to measure the proximity between 
two amino acid chains as the logarithmic likelihood ratio of two hypotheses, the main 
hypothesis that both of them originate from the same unknown protein as result of 
independent successions of local evolutionary mutations versus the null hypothesis 
that the chains are completely occasional combinations over the alphabet of 20 amino 
acids [9]. The generally accepted way of measuring such a likelihood ratio is calculat-
ing the so-called alignment score between two amino acid sequences, which is based 
on finding an appropriate consensus sequence from which both sequences might be 
obtained as result of as a small number of local corrections as possible, namely, dele-
tions, insertions and substitutions of single amino acids [10,11]. 

By its nature, the logarithmic likelihood ratio may take as positive as well negative 
values. In addition, such a ratio calculated for an amino acid sequence with itself gives 
different values for different proteins. As a result, it is hard to interpret the pairwise 
alignment score as a similarity measure. In this work, we pose the heuristic hypothesis 
that the set of all feasible amino acid sequences may be considered as a subset of 
isolated points in an imaginary Hilbert space in which the linear operations are de-
fined in an arbitrary unknown manner, and the role of inner product is played by the 
alignment score between the respective pair of amino acid chains. 

Such an assumption allows for treating the sought-for decision rule of pattern rec-
ognition by the principle “one class against another one” as a discriminant hyperplane 
immediately in the Hilbert space of objects. However, the absence of coordinate axes 
prevents from finding the “direction element” of the hyperplane, i.e. an element of the 
Hilbert space that splits all the space points into two nonintersecting regions by values 
of scalar products with it. 

Therefore, we propose to use an assembly of selected “representative” objects as a 
basis in the Hilbert space of all the feasible objects. The elements of the basic assem-
bly are not assumed to be classified, their mission is to serve as coordinate axes of a 
finite-dimensional subspace, onto which any new object, including those forming the 
classified training sample, could be projected by calculating inner products with the 
basic elements. 

The idea of making distinction between the unclassified basic assembly and classi-
fied training sample appears to be quite reasonable for the problem of protein fold 
class recognition, because the number of proteins whose spatial structure is known is 
much less than the number of proteins with known amino acid chains. 

2 The problem of protein fold class recognition 

The problem of finding the spatial structure of a protein represented by its primary 
amino acid sequence is a challenge posed by the nature. On the one hand, the necessi-
ty of such algorithms is dictated by the fact that application of usual physical tech-
niques of magnetic resonance and X-ray analysis is problematic in most cases. Al-
though the number of proteins whose spatial structure is known ever grows, the gap 
between the number of known amino acid sequences and that of known spatial struc-
tures is increasing dramatically. On the other hand, the “existence theorem” is proved 
by nature itself, because it has been never observed that an amino acid chain had more 
than one spatial structure.  

Each protein has its specific spatial organization which does not coincide with that 
of any other protein. The main principle of establishing the spatial structure of a given 
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protein from its amino acid chain consists in finding, for the given chain, the most 
appropriate structure from a bank of known structures and their fragments. For each 
amino acid residue in the chain forming a protein of a known structure, the vector of 
some quantitative features is evaluated which are assumed to be responsible for the 
spatial position of this residue in the three-dimensional structure. The succession of 
such features along the amino acid chain is called the profile of this structure. The 
same features are evaluated for the amino acid chain of the new protein, whereupon 
the succession obtained is compared with profiles of known structures by alignment of 
positions in this succession and in the respective profile with respect to eventual inser-
tions and deletions. Such a principle named threading [6] is fraught with enumeration 
of a large number of known structures. 

Despite the uniqueness of the spatial structure of each protein, it is the usual case 
that large groups of evolutionary allied proteins have very similar spatial structures. In 
this sense, there exist ”much less” spatial structures than primary ones. Of course, the 
classification of spatial structures is a problem which is not simple, but once a version 
of classification is accepted, the problem of assigning an amino acid chain to a class of 
spatial structures falls into the competence area of pattern recognition. 

In an earlier series of experiments [7], an attempt was made to describe the primary 
amino acid sequence of a protein by vector of its numerical features and consider it as 
a point in the respective linear vector space. In particular, the primary structure of a 
protein was represented by frequencies with which amino acids of the polar, neutral 
and hydrophobic type and their pairs occur in it. 

The results of those experiments cannot be assessed as quite successful, to all ap-
pearance, because of an immensely rich actual diversity of amino acid properties that 
may play an important part in forming the spatial structure of a protein. Therefore, we 
turn here to the featureless formulation of the fold class recognition problem. 

When studying the structure and properties of proteins, one of commonly used in-
struments is the characteristic of mutual similarity of two amino acid sequences 

),...,( 1 Naa  and ),...,( 1 Kbb  given by an appropriate pair-wise alignment 

procedure (Fig. 1). Procedures of such a kind lean upon a preset similarity matrix for 
all 210 pairs of 20 amino acids. Such matrices are called substitution matrices and 
characterize each amino acid pair ),( ba  by logarithmic ratio of, first, the probability 

of their independent occurrence in two amino acid chains abp  as result of evolutionary 

substituting the same unknown amino acid c  in a common ancestor chain, and, 

second, the product of general probabilities aq  and bq  of their occurrence in arbitrary 

sequences [9]:  

 )(log),( baab qqpbas  .  (1) 

The log likelihood ratio ),( bas  is positive if the probability that these two amino 

acids have a common ancestor is greater than the product of their general probabili-
ties, equals zero in the indifferent case, and is negative if the hypothesis of their com-
mon origin is less likely than that of the null hypothesis of their independent occasion-
al appearance. 

There are several versions of substitution matrices [9,12,13], but each of them is 
result of observations in large sets of proteins aligned in that or other manner by expe-
rienced biologists in accordance with their intuition based, in its turn, on that or other 
model of evolution.  

The numerical measure of the proximity of two proteins represented by their amino 

acid chains is determined as the greatest possible sum of ),(
ii kj bas  over all related 
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pairs of amino acids ),( ii kj , ,...3,2,1i , in a pair-wise alignment with respect to 

some penalties posed on the presence and length of gaps (Fig. 1): 

  penalties lengthgap),(),(  
i

kj ii
bas . (2)  

In our experiments we used this similarity measure of amino acid chains measured by 
the commonly adopted alignment procedure Fasta 3 [10,11] with substitution matrix 
Blossum 50 [9]. 

As the set of experimental data, we took the collection of proteins selected by 
Dr. Sun-Ho Kim from Lawrence Berkley National Laboratory in the USA. The collec-
tion contains 396 protein domains, i.e. relatively isolated fragments of amino acid 
chains, chosen from the SCOP Database (Structural Classification of Proteins). The 
protein domains forming the collection belong to 51 fold classes listed in Table 1. The 
principle of selection was to provide a low similarity of amino acid sequences within 
each family, with which purpose only those protein domains were chosen whose simi-
larity (2) to other selected domains did not exceed a preset threshold. Such a principle 
of selection resulted in protein domain families of different size.  

3 The pair-wise alignment score of two amino acid chains as their 
inner product in an imaginary Hilbert space 

It appears natural to interpret the log likelihood ratio for two amino acids ),( bas  (1) 

as experimentally registered outward exhibition of the actual proximity of their hidden 

properties. Let these properties be expressed by some hidden vectors ay  and by  for 

which the notion of inner product is defined ),(
ba yy , then the structure of (1) sug-

gests the idea to consider ),( bas  as a rough measure of it: ),(),(
babas yy . 

By analogy to a single summand, the score of the alignment as a whole (2) may also 
be interpreted as inner product of the respective combined feature vectors of two pro-

teins ),(),(


 xx  in an imaginary linear feature space. The greater the posi-

tive value of the similarity, the more “synchronous” are some essential properties of 
amino acids along the polypeptide chain, the zero value says about full lack of agree-
ment what corresponds to the notion of orthogonality, and a negative value should be 
interpreted as “opposite phases” of amino acid properties along the chains.  

However, this is not more than a cursory analogy. For an accurate justification of 
the hypothesis that there exists a Hilbert space in which the set of proteins could be 
embedded, we should show that the score matrix of any finite assembly of proteins 
tends to be nonnegative definite or, at least, can be approximated by such a matrix. 
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Table 1. Dr. Kim’s collection of proteins. 

 Fold class Size  Fold class Size 

1 Globin 12 27 Flavodoxin 9 
2 Cytochrome C 7 28 Adenine nucleotide alpha hydroclase 4 
3 Four-helical bundle 8 29 Rossmann-fold domains 14 
4 Ferritin 8 30 Thiamin-binding 3 
5 4-gelical cytokines 11 31 P-loop containing NTP hydrolases 9 
6 EF Hand 13 32 Thioredoxin fold 9 
7 Cyclin 4 33 Restriction endonucleases 5 
8 Cytochrome P450 5 34 Ribonuclease H motif 9 
9 Immunoglobin beta – sandwich 31 35 Phosphoribosyltransferases (PRTases) 3 

10 
Common fold of difteria toxin / transcription factors / 
cytochrome 

5 36 
S-adenosyl-L-methionine-dependent methyltransfe-
rases 

5 

11 Cupredoxins 9 37 Alpha / beta-Hydrolases 12 
12 C2 domain 3 38 Phosphorylase / hydrolase 5 
13 Viral coat and capsid proteins 15 39 Periplastic binding protein I 7 
14 Crystallins / protein S / yeast killer toxin 5 40 Periplastic binding protein II 7 
15 Galastose-binding domain 4 41 Lysozyme 4 
16 ConA lectins / glucanases 8 42 Cysteine proteinases 4 
17 OB-fold 17 43 Beta-Grasp 8 
18 Beta-Trefoil 5 44 Cystatin 7 
19 Reductase / isomerase / elongation factor  4 45 Ferredoxin 20 
20 Trypsin serine proteases 6 46 Zincin 7 
21 Acid proteases 5 47 N-terminal nucleophile aminohydrolases  4 
22 PH domain 7 48 ADP-ribosylation 4 
23 Lipocalings 6 49 C-type lectin 6 
24 Double-stranded beta-helix 6 50 Protein kinases (PK), catalytic core 4 
25 Barrel-sandwich hybrid 6 51 Beta-Lactamase / D-ala carboxypeptidase 3 
26 TIM-barrel 28    
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 : TNPGNASSTTTTKPTTTS-----RGLKTINETDPCIKNDSCTG

 : GS----ATSTPATSTTAGTKLPCVRNKTDSNLQSCNDTIIEKE
 i  12    34567 

 

Fig. 1. Fragment of an aligned pair of amino acid chains from the protein family Envelope 
glycoprotein GP120 in the database Pfam. 

We checked this hypothesis for an assembly of 396 proteins (Table 1) by way of 
calculating all the eigenvalues of the score matrix obtained by the pair-wise alignment 
procedure Fasta 3 [10,11] with the substitution matrix Blossum 50 [9]. All the eigen-
values turned out to be positive (Fig. 2). 

The conclusion suggests itself that the pair-wise similarity measure determined by 
the procedure Fasta 3 possesses properties having much in common with those of 
inner product. This circumstance should be considered as a reason in favor of the 
theoretical applicability of the principle of featureless pattern recognition in a Hilbert 
space to the problem of protein fold class recognition. 

18000

0

1                   100                   200                   300                     396

 
Fig. 2. Eigenvalues of Dr.Kim’s collection of proteins: 16621max  , 304min  ;  

all eigenvalues are positive. 

4 Hilbert space of classified objects and optimal discriminant 
hyperplane 

Let the set   of all feasible objects under consideration   is partitioned into two 

classes }1)(:{1  g  and }1)(:{1  g  by an unknown indica-

tor function 1)( g . The main idea of the featureless approach to pattern recogni-

tion consists in treating the set   as a Hilbert space in which the linear operations and 
inner product are defined in an arbitrary manner under the usual constraints: 

(1) addition is symmetric and associative  , 

   )()( ; 

(2) there exists an origin   such that   for any element  ;  

(3) there exists the inverse elements  )(  for any  ; 

(4) multiplication by a real coefficient  c , Rc , is associative 

)()(  dcdc  and 1  for any  ; 
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(5) addition and multiplication are distributive  ccc )( , 

 dcdc )( ; 

(6) inner product of elements is symmetric R ),(),(  and linear 

),(),(),(  , ),(),(  cc ; 

(7) inner product of an element with itself possesses the properties 0),(  , 

0),(   if and only if   and gives the norm 0),(| || | 21  . 

It is not meant that all the elements of the Hilbert space   do exist in reality. We 

consider really existing objects as making a subset 
~

 of isolated points in  , whe-
reas all the remaining elements are nothing else than products of our imagination. It is 

just the extension of 
~

 to   what allows speaking about “sums” of really existing 
objects and their “products” with real-valued coefficients. 

It is assumed that even if an element of the Hilbert space   really exists 


~

, it cannot be perceived by the observer in any other way than through its 

inner products ),(   with other really existing elements 
~

. If   is a 

fixed element of the Hilbert space, an imaginary one in the general case, the real-

valued linear discriminant function bbd  ),(),|( , where Rb  is a constant, 

may be used as decision rule }1,1{:)(ˆ g  of judging on the hidden class-

membership of an arbitrary object  , might it really exist or not:  

 









.1)(ˆ0

,1)(ˆ0
),(),|(

g

g
bbd   (3) 

Here the element   plays the role of the direction element of the respective 

discriminant hyperplane in the Hilbert space 0),(  b . 

However, we have, so far, no constructive instrument of choosing the direction 
element   and, hence, the decision rule of recognition, because, just as any ele-
ment of  , it can be defined only by its inner products with some other fixed ele-
ments that exist in reality. 

Let the observer have chosen an assembly of really existing objects 

 },...,{ 00

1

0

n , called the basic assembly, which is not assumed to be classi-

fied, in the general case, and, therefore, it is not yet a training sample. The basic as-
sembly will play the role of a finite basis in the Hilbert space that defines an n -
dimensional subspace 

  ),...,( 00

1 nn     

n

i iia
1

0: . (4) 

We restrict our consideration to only those discriminant hyperplanes whose direc-

tion elements belong to ),...,( 00

1 nn  , i.e. can be expressed as linear combinations 

 



n

i

iia
1

0)(a ,  nRa .  (5) 

The respective parametric family of discriminant hyperplanes    b),(a  

0),(
1

0  
ba

n

i ii  and, so, linear decision rules 

  







 

 ,1)(ˆ0

,1)(ˆ0
),(),(| 0

1 g

g
babd i

n

i

ia     ,  (6) 
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will be completely defined by inner products of elements of the Hilbert space with 

elements of the basic assembly ),( 0  i , ni ,...,1 . We shall consider the totality of 

these values for an arbitrary element   as its real-valued “feature vector” 

   nT

nxx R )()()( 1 x ,  ),()( 0  iix . (7) 

Mark that if   0),(  a  then 0),( 0  i  for all 00  i . This means that by 

choosing the direction elements in accordance with (5) we restrict our consideration to 
only those discriminant hyperplanes which are orthogonal to the subspace spanned 
over the basic assembly of objects. As a result, all elements of the Hilbert space that 

have the same inner products with basic elements  Tn ),(),( 00

1  x , or, in other 

words, the same projection on the basic subspace ),...,( 00

1 nn   (4), will be assigned 

the same class 1)(ˆ g  by linear decision rules (6). Therefore, we call the features 

(7) projectional features of Hilbert space elements. 
We have come to a parametric family of decision rules of pattern recognition in a 

Hilbert space (6) that lean upon projectional features of objects: 

  









,1)(ˆ0

,1)(ˆ0
)(,|)(

g

g
bbd T

xaax     . (8) 

Thus, the notion of projectional features reduces, at least, superficially, the problem of 
featureless pattern recognition in a Hilbert space to the classical problem of pattern 
recognition in a usual linear space of real-valued features. 

Let the observer be submitted a classified training sample of objects 

 },...,{ 1 N , )(),...,( 11 NN gggg  , that does not coincide, in the gen-

eral case, with the basic assembly },...,{ 00

1

0

n . The observer has no other way of 

perceiving them than to calculate their inner products with objects of the basic assem-
bly, what is equivalent to evaluating their projectional features  

     nT

jnj

T

jnjj xx R ),(),()()()( 00

11 x .  

Parameters of the discriminant hyperplane nRa  and Rb  (8) should be chosen so 

that the training objects would be classified correctly with a positive margin 0 : 

  









 

 .1)(when

,1)(when
)(),(),(|

1

0

j

j

j

T
n

i

jiij
g

g
bbabd xaa  (9) 

If the training sample is linearly separable with respect to the basic assembly, there 
exists a family of hyperplanes that satisfy these conditions. It is clear that the margin 

  remains positive after multiplying the pair  R b,)(a  with a positive coeffi-

cient  R bcc ,)(a , 0c , thus, it is sufficient to consider direction elements 

of a preset norm   const)(),(| |)(| |
21
 aaa . One of them, for which max  

and the conditions (9) are met, will be called the optimal discriminant hyperplane in 
the Hilbert space. 

Because the direction element of the discriminant hyperplane is determined here by 
a finite-dimensional parameter vector, such a problem, if considered in the basic sub-

space ),...,( 00

1 nn   (4), completely coincides with the classical statement of the 

pattern recognition problem as that of finding the optimal discriminant hyperplane. 
The same reasoning as in [2] leads to the conclusion that the maximum margin is 
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provided by choosing the direction element  )(a  and threshold Rb  from the 

condition  

 min| |)(| | 2 a ,        ,1),(  bg jj a    Nj ,...,1 . (10) 

However, such an approach becomes senseless in case the classes are inseparable in 
the basic subspace, and the constraints (9) and, hence, (10) are incompatible. To de-
sign an analogous criterion for such training samples, we, just as V. Vapnik, admit 

nonnegative defects    ,1),( jjj bg  a 0 j , and use a compromise crite-

rion min),(
1

  

N

j jC  with a sufficiently large positive coefficient C  meant 

to give preference to the minimization of these defects. So, we come to the following 
formulation of the generalized problem of finding the optimal discriminant hyperplane 
in the Hilbert space that covers both the separable and inseparable case:  

 

 









 


.,...,1,0,1)(

min,| |)(| |
1

2

Njbg

C

jjj

T

j

N

j

j

xa

a
 (11) 

5 Choice of the norm of the direction element  

The norm of the direction element of the sought-for hyperplane can be understood, at 
least, in two ways, namely whether as that of an element of the Hilbert space   

or as the norm of its parameter vector in the basic subspace nRa . In the former case 
we have, in accordance with (5),  

   Maaaaa
T

n

i

n

l

lili aa  
 1 1

0022 ),()(),(| |)(| | ,  (12) 

where  nlili ,...,1,),,( 00 M  is matrix )( nn  formed by inner products of basic 

elements 00

1 ,..., n , whereas in the latter case  

 aaa
T

n

i

ia  
1

22| |)(| | . (13) 

In the “native” version of norm (12), the training criterion (11) is aimed at finding 
the shortest direction element  , and, so, all orientations of the discriminant  
hyperplane in the original Hilbert space are equally preferable. On the contrary, if the 
norm is measured as that of the vector of coefficients representing the direction ele-
ment in the space of projectional features (13), the criterion (11) seeks the shortest 

vector nRa  (13), so that equally preferable are all orientations of the hyperplane in 
nR  but not in  .  
It is easy to see that if   and   are two arbitrary elements of a Hilbert 

space  , then the squared Euclidean distance from   to its projection onto the beam 

formed by element   equals ),(),(),( 2  . In its turn, it can be shown [8] 

that if minaa
T  under the constraint   const)(),(  Maaaa

T , then 

  max)(,
1

2
 

n

j j a , and, so, )(a  tends to be close to the major inertia axis of 

the basic assembly. 
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Thus, training by criterion (11) with aaa
T 2| |)(| | , i.e. without any preferences in 

the space of projectional features, is equivalent to a pronounced preference in the 
original Hilbert space in favor of direction elements oriented along the major inertia 
axis of the basic assembly of object. As a result, the discriminant hyperplane in the 
Hilbert space tends to be orthogonal to that axis (Fig. 3). 

This is out of significance if the region of major concentration of objects in the 
Hilbert space is equally stretched in all directions. But such indifference is rather an 
exclusion than a rule. It is natural to expect the distribution of objects be differently 
extended in different directions, what fact will be reflected by the form of the basic 
assembly and, then, by the training sample. In this case, a reliable decision rule of 
recognition exists only if objects of two classes are spaced just in one of the directions 
where the extension is high. Therefore, it appears reasonable to escape discriminant 
hyperplanes oriented along the basic assembly even if the gap between the points of 
the first and the second class in the training sample has such an orientation, and prefer 
transversal hyperplanes (Fig. 3). It is just this preference that is expressed by the train-

ing criterion (11) with min| |)(| | 2  aaa
T  in contrast to min| |)(| | 2  Maaa

T .  

spaceHilberttheinhyperplane
ntdiscriminaoptimal theof  versiosT wo

minmin  Maaaa
TT

 

 

 j  elements of the

training sample, 1jg

 j  elements of the

training sample, 
1jg

Area of admissible

direction elements

Admissible direction element
)(a  with the minimum norm of

the coefficient vector |||| a

Isosurfaces of constant norm

const|||| a  in the Hilbert space

00  i  elements of the

basic assembly

 

Fig. 3. Minimum norm of the direction vector of the discriminant hyperplane in the space of 
projectional features as criterion of training. In the original Hilbert space, the discriminant 
hyperplanes are preferred whose direction elements are oriented along the major inertia axis of 
the basic assembly. 

6 Smoothness principle of regularization in the space of 
projectional features 

Actually, training by criterion minaa
T

 is nothing else than a regularization me-
thod that makes use of some information on the distribution of objects in the Hilbert 
space. This information is taken from the basic assembly and, so, should be consi-
dered as a priori one relative to the training sample. In case the distribution is almost 
degenerate in some directions, it is reasonable to prefer discriminant hyperplanes of 
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transversal orientation even if the training sample suggests the longitudinal one as it is 
shown in Fig. 3. 

In this Section, we consider another source of a priori information that may be 
drawn from the basic assembly of objects before processing the training sample. The 
respective regularization method follows from the very nature of projectional features, 
namely, from the suggestion that the closer are two objects of the basic assembly, the 
less should be the difference between the coefficients of their participating in the di-
rection element of the discriminant hyperplane (5).  

In the feature space of an arbitrary nature, there are no a priori preferences in favor 
of that or other mutual arrangement of classes, and the only source of information on 
the sought-for direction is the training sample. But in the space of projectional features 
different directions are not equally probable, and it is just this fact that underlies the 
regularization principle considered here.  

The elements of the projectional feature vector of an object   are its scalar 

products with objects of the basic assembly   nT

nxx R )()()( 1 x , 

),()( 0

kkx  ,  00

k . The basic objects, in their turn, are considered as 

elements of the same linear Hilbert space and, so can be characterized by their mutual 

proximity. If two basic objects 0

j  and 0

k  are close to each other, the respective 

projectional features do not carry essentially different information on objects of rec-

ognition  , and it is reasonable to assume that the coefficients ja  and ka  in the 

linear decision rule should also take close values. Therein lies the a priori information 
on the direction vector of the discriminant hyperplane that is to be taken into account 
in the process of training.  

In fact, the coefficients ja  are functions of basic points in the Hilbert space 

)( 0

jj aa  , and the regularization principle we have accepted consists in the a priori 

assumption that this function should be smooth enough. It is just this interpretation 
that impelled us to give such a principle of regularization the name of smoothness 
principle.  

It remains only to decide how the pair-wise proximity of basic objects should be 

quantitatively measured. For instance, inner products ),( kjjk   might be taken as 

such a measure. Then, the a priori information on the sought-for direction element can 

be easily introduced into the training criterion min
1

  

N

j j

T Caa  in (11) with 

aaa
T 2| |)(| |  as an additional quadratic penalty  aBIa )(T  min

1
 

N

j jC  

where  
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2

1

1

1

1

1

111

1 1

2





































 
n

i

innnn

n

n

i

i
n

i

n

l

liil

T aa







BBaa   

and parameter 0  presets the intensity of regularization.  
Because the size of the training sample N  is, as a rule, less than the dimensionality 

n  of the space of projectional features, the subsamples of the first and the second 
class will most likely be linearly separable. On the force of this circumstance, when 
solving the quadratic programming problem (11) without regularizing penalty, the 
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optimal shifts of objects will equal zero 0 j , Nj ,...,1 . After introducing the 

regularization penalty, the errorless hyperplane may turn out to be unfavorable from 
the viewpoint of a priori preferences expressed by matrix B  with sufficiently large 
coefficient  . In this case, the optimal hyperplane will sacrifice, if required, the cor-
rect classification of some especially nuisance objects of the training sample, what will 

result in positive values of their shifts 0 j . 

7 Experiments on protein fold class recognition “one against one” 

Experiments on fold class recognition were conducted with the collection of amino 
acid sequences of 396 protein domains grouped into 51 fold classes (Table 1). As the 
initial data set served the matrix 396  396 of pair-wise alignment scores obtained by 
alignment procedure Fasta 3 and considered as matrix of inner products of respective 

protein domains ),( kj   in an imaginary Hilbert space. 

In the series of experiments described in this Section, we solved the problem of 
pair-wise fold class recognition by the principle “one against one”. There are 51m  

classes in the collection and, so, 12752)1( mm  class pairs, for each of which we 

found a linear decision rule of recognition. 

As the basic assembly },...,{ 00

1

0

n , we took amino acid chains of 51 protein 

domains, 51n , one from each fold class. As representatives of classes, their “cen-
ters” were chosen, i.e. the protein domains that gave the maximum sum of pair-wise 
scores with other members of the respective class. Thus, each protein domain was 
represented by a 51-dimensional vector of its projectional features (7). 

For each of the 1275 class pairs, the training sample consisted of all protein do-
mains making the respective two classes (Table 1). Thus, the size of the training sam-
ple varied from N 7 for pairs of small classes, such as (50) Protein kinases, catalic 

core and (51) Beta-Lactamase, to N 59 in two greatest classes (9) Immunoglobin 
beta - sandwich and (26) TIM-barrel. 

We applied the technique of pattern recognition with preferred orientation of the 
discriminant hyperplane along the major inertia axis of the basic assembly in the Hil-
bert space. The quadratic programming problem (11) was solved for each of 1275 
class pairs in its dual formulation [2].  

A way of empirical estimating the quality of the decision rule immediately from the 
training sample offers the well-known leave-one-out procedure [2]. One of the objects 
of the full training sample containing N  objects is left out at the stage of training, and 
the decision rule inferred from the remaining 1N  objects is applied to the left-out 
one. If the result of recognition coincides with the actual class given by the trainer, 
this fact is registered as success at the stage of examination, otherwise an error is 
fixed. Then the control object is returned to the training sample, another one is left 
out, and the experiment is run again. Such a procedure is applied to all the objects of 
the training sample, and the percentage of errors or correct decisions is calculated, 
which is considered as an estimate on the quality of the decision rule inferred from the 
full sample would it be applied to the general population. 

In each of 1275 experiments, the separability of the respective two fold classes was 
estimated by such a procedure. Two rates were calculated for each class pair, namely, 
the percentage of correctly classified protein domains of the first and the second class. 
As the final estimate of the separability, the worst, i.e. the least, of these two percen-
tages was taken. 
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As a result, the separability was found to be not worse than:  
100%  in    9%  of all class pairs (completely separable class pairs), 
 90%   in  14%  of all class pairs,  
 80%   in  32%  of all class pairs,  
 70%   in  53%  of all class pairs.  

The separability of 26 classes from more than one half of other classes is not worse 
than 70%. One class, namely, (50) Protein kinases (PK), catalytic core, showed its 
complete separability from all the classes. 

On a data set of a lesser size, we checked how the pair-wise separability of fold 
classes will change if the number of basic proteins, i.e. the dimensionality of the pro-
jectional feature space, increases essentially. For this experiment, we took all the pro-
teins of the collection as basic ones, so that the dimensionality of the projectional 
feature space became n 396. 

The same truncated data set was used for studying how the separability of classes is 
affected by normalization of the alignment scores between amino acid chains, what is 
equivalent to projection of respective points of the imaginary Hilbert space onto the 

unit sphere. If ),(   is inner product of two original points of the Hilbert space 

associated with the respective two protein domains   and  , the inner product of 

their projections   and   onto the unit sphere will be 

 ),(),(),(),(  . We used these values, instead of ),(  , as 

similarity measure of protein domain pairs for fold class recognition. 
For this series of experiments, we selected 7 fold classes different by their size and 

averaged separability from other classes. The chosen classes that contain in sum 85 
protein domains are shown in Table 2. 

The results are presented in Table 3. As we see, the extension of the basic assembly 
improved the separability of the class pairs that participated in the experiment. As to 
the normalization of the alignment score, it led to an improvement with the small basic 
assembly and practically did not change the separability with the enlarged one.  

Experimental study of effects of regularization was conducted with the same trun-
cated data set (Table 2). We examined how the smoothness principle of regularization, 
expressed by the modified quadratic programming problem (4.1, improves the separa-
bility of fold classes “one against one” within the selected part of the collection. The 
separability of each of 21 pairs of classes was estimated by the leave-one-out proce-
dure several times with different values of the regularization coefficient  . Each time, 
the separability of a class pair was measured by the worst percentage of correct deci-
sions in the first and the second class, whereupon the averaged separability over all 21 
class pairs was calculated for the current value of  . 

Such a series of experiments was carried out twice, with original and normalized 
alignment scores. The dependence of the separability on the regularization coefficient 
in both series is shown in Fig. 4. In both series of experiments, a marked improvement 
of the separability is gained. The quality of training grows as the regularization coeffi-
cient increases, however, the improvement in not monotonic. A slight drop in separa-
bility with further increase in the coefficient after the maximum is attained arises from 
a too deep roughness of the decision rule adjustment. 

Table 2. Seven fold classes selected for the additional series of experiments. 

 Fold class Size 

Averaged 
separability 
from other 

classes 
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1 Globin 12 73.4 % 

3 Four-helical bundle 8 70.8 % 

4 Ferritin 8 60.4 % 

5 4-gelical cytokines 11 66.0 % 

10 Common fold of difteria toxin / transcription factors / cytochrome 5 65.2 % 

12 C2 domain 3 8.2 % 

26 TIM-barrel 28 52.6 % 

Table 3. Averaged pair-wise separability of seven fold classes in four additional 
experiments. 

Size of the basic  
assembly n  

Averaged separability 

Original score matrix 

),(   

Normalized score matrix 

),(   

51 63.5 % 69.4 % 

396 76.6 % 75.3 % 

50

60

70

80

Separability (%)

63.5

70.6

5 10 15
50

60

70

80
78.7

5 10 15

Separability (%)

69.4

Original score matrix Normalized score matrix

tcoefficien
ionReglarizat

tcoefficien
ionReglarizat

 

Fig. 4. Dependence of the averaged pair-wise separability over 21 fold class pairs on the regu-
larization coefficient. 

8 Conclusions 

Within the bounds of the featureless approach to pattern recognition, the main idea of 
this work is treating the pair-wise similarity measure of objects of recognition as inner 
product in an imaginary Hilbert space, into which really existing objects may be men-
tally embedded as a subset of isolated points. Two ways of regularization of the train-
ing process follow from this idea, which contribute to overcoming the small size of the 
training sample. In the practical problem of protein fold class recognition, to embed 
the discrete set of known proteins into a continuous Hilbert space, we propose to con-
sider as inner product the pair-wise alignment score of amino acid chains, which is 
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commonly adopted in bioinformatics as their biochemically justified similarity meas-
ure.  
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