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Abstract

The featureless methodology is applied to the class
of pattern recognition problems in which the adopted

pairwise similarity measure possesses the most funda-

mental property of inner product to form a nonnegative

de�nite matrix for any �nite assembly of objects. It is
proposed to treat the set of all feasible objects of recog-

nition as a subset of isolated points in an imaginary

Hilbert space. This idea is applied to the problem of
determining the membership of a protein given by its

amino acid sequence (primary structure) in one of pre-

set fold classes (spatial structure) on the basis of mea-

suring the likelihood that two proteins have the same
evolutionary origin by way of calculating the so-called

alignment score between two amino acid sequences, as

it is commonly adopted in computational biology.

1. Introduction

There exists a wide class of applications in which
it is easy to evaluate some numerical characteristics of
pairwise relationship between any two objects, but it is
hard to indicate a set of rational individual attributes
of objects that could form the axes of a feature space.
As an alternative to the feature-based methodology of
pattern recognition, R. Duin and his colleagues [1] pro-
posed a featureless approach, in which objects are as-
sumed to be represented by appropriate measures of
their pairwise similarity or dissimilarity.

It is just this idea we use here as the basis of a pat-
tern recognition technique for the class of applications
in which the similarity measure forms a nonnegative
de�nite matrix for any �nite set of objects and, so, pos-
sesses the most fundamental property of inner product.

In this work, we lean upon the heuristic hypothesis
that the set of all feasible objects may be considered
as a subset of isolated points in an imaginary linear
space (Hilbert space) in which the role of inner prod-
uct is played by the similarity between any two objects.

This work is supported by the Russian Foundation of Basic Re-

search and Rutgers University Strategic Opportunity Allocation

Project on Bioinformatics.

In case of two classes, such an assumption allows for
treating the sought-for decision rule of pattern recog-
nition as a discriminant hyperplane immediately in the
Hilbert space of objects.

As a glowing example of such an application, we
consider the problem of protein fold class recognition,
i.e. allocating a protein, given by the primary chemi-
cal structure of its polymerous molecule as a sequence
of amino acid residues from the alphabet of 20 amino
acids existing in nature, over a �nite set of typical spa-
tial structures, each associated with a speci�c manner
in which the primary amino acid chains fold in space
under a combination of numerous physical forces [3].

It is common practice in computational biology to
measure the proximity between two amino acid chains
!
0 = (a1; : : : ; aK0) and !

00 = (a1; : : : ; aK00) as the loga-
rithmic likelihood ratio �(!0; !00) of the main hypothe-
sis that both of them originate from the same unknown
protein as result of independent successions of local
evolutionary mutations versus the null hypothesis that
the chains are completely occasional combinations over
the alphabet of 20 amino acids. The generally accepted
way of measuring such a likelihood ratio is the so-called
alignment of two amino acid sequences, namely, �nding
the minimum number of deletions, insertions and sub-
stitutions of single amino acids that turn the sequences
into each other [4] (Fig. 1).

By its nature, the logarithmic likelihood ratio may
take as positive as well negative values and, having
been calculated for an amino acid sequence with it-
self, gives di�erent positive values for di�erent pro-
teins. It appears natural to consider the alignment
score �(!0; !00) as inner product of two proteins in an
imaginary linear space. We checked this hypothesis for
an assembly of 396 proteins by way of calculating all
the eigenvalues of the alignment score matrix. The fact
that all the eigenvalues turned out to be positive is a
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Figure 1. Fragment of an aligned pair of

amino acid chains.



reason in favor of the theoretical applicability of the
principle of featureless pattern recognition in a Hilbert
space to the problem of protein fold classi�cation.

2. Hilbert space of classi�ed objects and

optimal discriminant hyperplane

Let the set 
 of all feasible objects under consider-
ation ! 2 
 is partitioned into two classes 
1 = f! 2


 : g(!) = 1g and 
2 = f! 2 
 : g(!) = �1g by an
unknown indicator function g(!) = �1. The main idea
of the approach to pattern recognition we consider here
consists in treating the set 
 as a Hilbert space in which
the linear operations and inner product are de�ned in
an arbitrary manner under the usual constraints:
(1) addition is symmetric and associative !

0 + !
00 =

!
00 + !

0 2 
, !0 + (!00 + !
000) = (!0 + !

00) + !
000;

(2) there exists an origin � 2 
 such that ! + � = !

for any element ! 2 
;
(3) there exists the inverse elements �(!) + ! = � for
any ! 2 
;
(4) multiplication by a real coe�cient c! 2 
, c 2 R, is
associative (cd)! = c(d!) and 1! = ! for any ! 2 
;
(5) addition and multiplication are distributive c(!0 +
!
00) = c!

0 + c!
00, (c + d)! = c! + d!;

(6) inner product of elements is symmetric (!0; !00) =
(!00; !0) 2 R and linear (!; !0+!

00) = (!; !0)+(!; !00),
(!; c!0) = c(!; !0);
(7) inner product of an element with itself possesses the
properties (!; !) � 0, (!; !) = 0 if and only if ! = �,
and gives the norm k!k = (!; !)1=2 � 0.

It is not meant that all the elements of the Hilbert
space 
 do exist in reality. We consider really exist-
ing objects as making a subset ~
 of isolated points
in 
, whereas all the remaining elements are nothing
else than products of our imagination. It is just the
extension of ~
 to 
 what allows for speaking about
"sums" of really existing objects and their "products"
with real-valued coe�cients.

It is assumed that even if an element of the Hilbert
space ! 2 
 really exists ! 2 ~
 � 
, it cannot be per-
ceived by the observer in any other way than through
its inner products (!; !0) with other really existing el-

ements !
0 2 ~
 � 
. If # 2 
 is a �xed element

of the Hilbert space, an imaginary one in the gen-
eral case, the real-valued linear discriminant function
d(!j#; b) = (#; !) + b, where b 2 R is a constant, may
be used as decision rule ĝ(!) : 
! f1;�1g of judging
on the hidden class-membership of an arbitrary object
! 2 
, might it really exist or not:

d(!j#; b) = (#; !) + b

�
> 0! ĝ(!) = 1;

< 0! ĝ(!) = �1:
(1)

Here the element # 2 
 plays the role of the direction
element of the respective discriminant hyperplane in
the Hilbert space (#; !) + b = 0.

Let the observer be submitted a classi�ed train-
ing set of objects 
� = f!1; : : : ; !Ng � 
, g1 =
g(!1); : : : ; gN = g(!N ). Parameters of the discrimi-
nant hyperplane # 2 
 and b 2 R (1) should be chosen
so that the training objects would be classi�ed correctly
with a positive margin � > 0:

d(!j j#; b) = (#; !j)+b

�
� � when g(!j) = 1;

� �� when g(!j) = �1:

The same reasoning as in [2] leads to the conclusion
that the maximummargin is provided by choosing the
direction element # 2 
 and threshold b 2 R from the
condition k#k2 ! min, gj [(#; !j)+b] � 1, j = 1; : : : ; N ,
or, in case the training set is linearly inseparable,

k#k2 + C
PN

j=1 �j ! min, gj[(#; !j) + b] � 1 � �j ,
�j � 0.

So, we come to the following formulation of the gen-
eralized problem of �nding the optimal discriminant
hyperplane in the Hilbert space that covers both the
separable and inseparable case:(

k#k2+ C
PN

j=1
�j ! min;

gj[(#; !j) + b] � 1� �j ; �j � 0; j = 1; : : : ; N:
(2)

3. Basic assembly of objects and choice

of the norm of the direction element

As we shall see below, the structure of the decision
rule inferred from the training set essentially depends
on the kind of the norm of the direction element whose
squared value k#k2 is to be minimized in accordance
with the training criterion (2). The formula

k#k = (#; #)1=2 (3)

does not exhaust the variety of ways in which the norm
may be de�ned. In this Section, we introduce the no-
tion of a basic assembly of objects which does not co-
incide with the training set in the general case and
serves as basis for, at least, one more kind of norm
meant to carry some additional information on the dis-
tribution of objects in the Hilbert space, di�erent from
that carried by the trainer's information on the class
memberships of objects.

In many applications, acquisition of information on
class membership of objects presents a considerable dif-
�culty, therefore, forming a su�ciently large training
set is quite problematic. At the same time, it is much
easier to collect an unclassi�ed assembly of objects for
which pairwise inner products can be calculated. As
examples of such applications may serve, in particular,
the problem of protein fold class recognition as well as
practically all problems of medical diagnosis.

Let 
0 = f!0

1
; : : : ; !

0

ng � 
 be an unclassi�ed as-
sembly of objects called the basic assembly. In par-
ticular, the training set may be part of the basic as-
sembly 
� � 
0 or coincide with it 
� = 
0, but



these are di�erent sets in the general case. If we
denote by M =

�
(!0

i ; !
0

j ); i; j = 1; : : : ; n
�
the matrix

of inner products within the basic assembly and by

x(#) =
�
(#; !0

1
) � � � (#; !0

n)
�T

2 R
n the vector of inner

products of element # 2 
 with basic objects !0

i 2 
�,
then function

k#k =
��
M

�1
x(#)

�T
M

�1
x(#)

�1=2
(4)

will possess all properties of norm in the Hilbert
space 
. Here vector M

�1
x(#) is vector of coef-

�cients (a1(#) � � � an(#))
T

that form the projectionPn

i=1 ai(#)!
0

i of element # 2 
 onto the subspace
spanned over the basic assembly 
0=f!0

1
; : : : ; !

0

ng�
.
Training by criterion (2) with the "native" version

of norm (3) is aimed at �nding the shortest admissible
direction element # 2 
, and, so, all orientations of
the discriminant hyperplane in the Hilbert space are
equally preferable. On the contrary, it can be shown
[5] that training with norm (4) is equivalent to a pro-
nounced preference in the Hilbert space in favor of di-
rection elements oriented along the major inertia axis
of the basic assembly of object. As a result, the dis-
criminant hyperplane in the Hilbert space tends to be
orthogonal to that axis (Fig. 2).

Area of admissible
direction elements
gj [(#; !j) + b] � 1

Basic assembly

Training set

(1) k#k2 = (#; #)! min

(2) k#k2 =
�
M

�1
x(#)

�T
M

�1
x(#)! min

�
�
�
�
��

Admissible direction
element of
minmum norm (2)

(1)

���� ����

Figure 2. Minimum norm of the direction

element of the discriminant hyperplane in

the Hilbert space as criterion of training

for two versions of norm.

4. Structure of decision rules

The structure of decision rules for both kinds of
norm (3) and (4) immediately follows from the dual
formulation of the quardratic programming problem
(2). The only speci�city is that argument # 2 
 is
element of the Hilbert space but not a vector, as usu-
ally, therefore, for minimization of the respective La-
gragian we have to use the notion of Frechet di�eren-
tial [6] instead of that of gradient. In case of norm

(3), the Frechet di�erential of the real-valued function
f(#) = (#; #) : 
 ! R is the element of the Hilbert
space 2# 2 
, and for norm (4) the Frechet di�eren-

tial of the function f(#) =
�
M

�1
x(#)

�T
M

�1
x(#) will

be linear combination of basic objects 2
Pn

i=1
ai(#)!

0

i

with elements of vector M�1
x(#) as coe�cients.

Training by criterion (2) with norm (3), what means
absense of preferred orientation of the discriminant hy-
perplane in the Hilbert space, is equivalent to solving
the dual quadratic programming problem(

2
PN

j=1�j�
PN

j=1

PN

k=1 gjgk(!j; !k)�j�k!max;PN

j=1
gj�j = 0; 0 � �j � (1=2)C; j = 1; : : : ; N:

Those of resulting Lagrange multipliers �j � 0 at ob-
jects of the training set 
� = f!j, j = 1; : : : ; Ng which
di�er from zero �j > 0 point at support objects forming
the direction element of the optimal dicriminant hyper-
plane as their linear combination # =

P
j:�j>0

gj�j!j

and, so, constitute the discriminant function applicable
to any new object ! 2 
 (1)

d(!j#; b) =
X

j:�j>0
gj�j(!; !j) + b: (5)

Threshold b is determined here by the symmetricity
condition

b = (1=2)[ min
j:gj=1

(#; !j) � max
j: gj=�1

(#; !j)] (6)

In this case, the basic assembly does not participate
in training and, respectively, in the discriminant func-
tion (5) which leans upon inner products of the new
object with only support objects of the training set.

But in case of norm (4), which provides a pro-
nounced preference in favor of direction elements ori-
ented along the major inertia axis of the basic assembly,
we come to another dual problem(
2
PN

j=1�j�
PN

j=1

PN

k=1 gjgkx
T (!j)x(!k)�j�k!max;PN

j=1 gj�j = 0; 0 � �j � (1=2)C; j = 1; : : : ; N;

where x(!) =
�
(!; !0

1
) � � � (!; !0

1
)
�T

is vector formed
by inner products of an object ! 2 
 with elements of
the basic assembly. The resulting direction element of
the optimal discriminant hyperplane is linear combina-
tion of basic objects # =

Pn

i=1
ci !

0

i with coe�cients
determined by positive Lagrange multipliers and inner
products of support objects of the training set with ele-
ments of the basic assembly ci =

P
j:�j>0

gj�j(!j; !
0

i ).

This solution results in the discriminant function

d(!j#; b) =
X

j:�j>0
gj�jx

T (!)x(!j) + b

where threshold b can be found by the formula analo-
gous to (6) with x

T (!)x(!j ) instead of (!; !j).
Just as previously, only support obects of the train-

ing set occur in this discriminant function, but, in con-
trast to (5), each of them is represented by its inner
products with elements of the basic assembly, and, so,
all the basic objects participate in training as well as
in decision making.



5. Experimental results

Experiments on fold class recognition were con-
ducted with the collection of amino acid sequences of
396 protein domains grouped into 51 fold classes [5].
As the initial data set served the matrix 396 � 396 of
pair-wise alignment scores considered as matrix of in-
ner products of respective protein domains (!i; !j) in
the imaginary Hilbert space.

We solved the problem of pair-wise fold class recog-
nition by the principle "one against one". There are
m = 51 classes in the collection and, so, m(m�1)=2 =
1275 class pairs, for each of which we found a linear
decision rule of recognition.

For each of the 1275 class pairs, the training sample
consisted of all protein domains making the respective
two classes. The size of the training sample varied from
N = 1 for pairs of small classes to N = 59 in two
greatest classes.

We applied the technique of pattern recognition with
preferred orientation of the discriminant hyperplane
along the major inertia axis of the basic assembly

 = f!0

1
; : : : ; !

0

ng, which was formed by amino acid
chains of 51 protein domains, n = 51, one from each
fold class. As representatives of classes, their "cen-
ters" were chosen, i.e. the protein domains that gave
the maximum sum of pair-wise alignment scores with
other members of the respective class. The quadratic
programming problem (2) with norm (4) was solved for
each of 1275 class pairs in its dual formulation.

A way of empirical estimating the quality of the de-
cision rule immediately from the training set o�ers the
well-known leave-one-out procedure [2], which was used
in each of 1275 experiments for evaluating the separa-
bility of the respective two fold classes. Two rates were
calculated for each class pair, namely, the percentage
of correctly classi�ed protein domains of the �rst and
the second class. As the �nal estimate of the separabil-
ity, the worst, i.e. the least, of these two percentages
was taken.

As a result, the separability was found to be not
worse than:
100% in 9% of all class pairs (completely separable class
pairs),
90% in 14% of all class pairs,
80% in 32% of all class pairs,
70% in 53% of all class pairs.

The separability of 26 classes from more than one
half of other classes is not worse than 70%.

On a data set of a lesser size, we checked how the
pair-wise separability of fold classes will change if the
number of basic protein domains, i.e. the dimension-
ality of the projectional feature space, increases essen-
tially. For this experiment, we took all the protein
domains of the collection as basic ones n = 396.

The experiment was conducted with 7 selected fold
classes di�erent by their size and averaged separabil-
ity from other classes. As a result, the extension of
the basic assembly from n = 51 to n = 396 improved
the averaged separability of the class pairs that partic-
ipated in the experiment from 63.5% to 76.6%.

6. Conclusions

Within the bounds of the featureless approach to
pattern recognition, the main idea of this work is treat-
ing the pair-wise similaritymeasure of objects of recog-
nition as inner product in an imaginary Hilbert space,
into which really existing objects may be mentally em-
bedded as a subset of isolated points. In the practi-
cal problem of protein fold class recognition, to embed
the discrete set of known proteins into a continuous
Hilbert space, we propose to consider as inner prod-
uct the pair-wise alignment score of amino acid chains,
which is commonly adopted in bioinformatics as their
biochemically justi�ed similarity measure.
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