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Abstract

 

—Experimental results confirming the earlier published theoretical statements about the usefulness of
the application of secondary projection features in the presence of 

 

a priori

 

 information on the distribution of
objects from a general population are given. The use of projection features may improve classification quality
when the training samples are sparse.
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INTRODUCTION

The authors of [1, 2] suggested the concept of the
so-called featureless approach to pattern recognition,
which consists in the idea of training algorithms with
use in training only the matrix of proximities (similari-
ties) between objects from the training sample. Such an
approach is useful when it is difficult to specify a set of
meaningful characteristics of objects but, at the same
time, there is an objective measure of similarity or dis-
similarity between objects.

One of the methods of the featureless approach sup-
poses training in the space of so-called secondary, or
projection, features, each of which is a measure of sim-
ilarity to an object from a distinguished set of nonclas-
sified objects (basis population). It was theoretically
shown in [3] that such a training method can be used for
regularizing the decision rule in recognition in the pres-
ence of 

 

a priori

 

 information about the mutual arrange-
ment of the classes to be recognized. This paper
describes an experimental confirmation of the idea of
employing the useful information contained in the basis
population of objects.
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1. Our approach, as opposed to the pattern recognition
problem in the classical setting, does not assume the
possibility of measuring any observable features 
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ble to apply the training methods developed for vector
feature spaces. However, for any two objects 
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their similarity can be measured. Thus, the space 
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 of
recognition objects can be treated as a Hilbert space.
Under certain constraints, we can treat the measure

 

µ

 

(

 

ω

 

', 

 

ω

 

") of similarity between objects of the space 
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as the inner product of elements in the Hilbert space;
i.e., we can assume that 
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One way of training in such a problem is as follows.

We suggest fixing a finite set 
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called a basis assembly. In the general case, we do not
assume that the elements of the basis assembly are clas-
sified (this is not a training sample). The basis popula-
tion plays the role of a finite basis in the Hilbert space;
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. Thus, each ele-
ment 
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 in the Hilbert space is assigned a set of
similarity measures, which is considered as a real-val-
ued vector of secondary or projection features:
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In [3, 4], it is shown that training in the space of pro-
jection features is equivalent to the expression of pref-
erences, which are related to the tendency of the direct-
ing element of a partitioning hyperplane to be close to
the principal inertia axis of the basis population of
objects, in the initial Hilbert space. As a result, the par-
titioning hyperplane tends to be orthogonal to this axis.

The aforesaid considerations are inessential if the
domain where the objects of the Hilbert space largely
accumulate does not have a prevailing orientation. Such
an indifference is an exception rather than a rule. It is
natural to assume that the distribution of objects is
stretched differently in different directions. This must
be reflected in the basis assembly and, of course, in the
training sample. We believe that the assumption that the
set of objects from one class is approximately equally
stretched in all directions is natural. Mathematically,
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this assumption is expressed as follows: if we form the
matrix of pairwise mutual proximities having the prop-
erties of an inner product for some set of objects from
the same class, then all eigenvalues of this matrix are
approximately the same. Now, suppose that the set
under consideration contains objects from both the first
and second classes. Suppose also that we do not know
which objects in this set belong to the first and second
classes, but we know that the classes can be linearly
partitioned. Note that the basis assembly is the very
same set of objects of two classes. According to our
assumption, each class forms a domain close to a
sphere; therefore, both classes together must form a
domain stretched in the direction in which the classes
are distant from each other. The eigenvalues of the
matrix of pairwise mutual proximities between objects
forming this domain must differ substantially. The
eigenvector corresponding to the maximum eigenvalue
indicates the stretch direction.

Thus, under the assumptions made above, in train-
ing, it is natural to give priority to partitioning hyper-
planes almost orthogonal to the principal eigenvector of
the basis population of objects. For this reason, it seems
expedient to ignore the partitioning hyperplanes ori-
ented along the basis population, even if the gap
between the objects from the first and second classes
has such an orientation, and prefer “transverse” hyper-
planes.

The preference of the decision rules whose direct-
ing elements are close to the inertia axis of the basis
can be used as a method for fighting the small sample
curse (a method for stabilizing or regularizing the
decision rule in recognition); it consists in employ-
ing additional information, possibly 

 

a priori

 

 and not
reflected in the training sample, in the construction
of the decision rule.

AN EXPERIMENTAL STUDY

To verify the theoretical statements, we considered
two kinds of features:

(i) the feature vector xj = (x1, x2, …, xn)T ∈  Rn of the
jth object is a point in n-dimensional real space;

(ii) the feature vector  = ( xj, xj, …, xj)T ∈
RN of the jth object is the vector of pairwise inner prod-
ucts with the initial feature vectors of objects from the
basis population.

In the second case, we modeled the problem of fea-
tureless pattern recognition. As the basis assembly, the
training sample was taken.

x j* x1
T x2

T xN
T

A decision rule (x) was chosen in the class of lin-
ear functions

The hyperplane d(x|a, b) = aTx + b = 0 partitions the
vector space Rn (in the first case) or RN (in the second
case) into two domains of decisions in favor of the first
and second classes. However, we emphasize that, in the
second case, the dimension of the coefficient vector
a* = (a1, a2, …, aN)T equals N, because the dimension
of the vector of projection features equals the number
of objects in the training sample; i.e.,  ∈  RN.

To construct a decision rule, we used Vapnik’s
method of support vectors [5], which determines the
optimal partitioning hyperplane in the sense that it
maximizes gaps between samples.

To define the notion of the stretch of the distribution
of objects in the feature space, we denote the minor and
major half-axes of the ellipse bounding the domain in
the two-dimensional space inside which the features of
objects from the training sample are randomly formed
on the basis of the uniform distribution law by a and b
and the sides of the conventional right-angled parallel-
epiped bounding the domain in the three-dimensional
space by a, b, and c. In the three-dimensional case, we
assume that a = c. The stretch of the population of
objects is the ratio k = b/a.

To establish the advantage of the pattern recognition
training algorithm using the projection features  =

( xj , xj , …, xj)T ∈  RN over the training method

using features of the form xj = (x1, x2, …, xn)T ∈  Rn

when the stretch coefficient is large enough, we per-
formed series of model experiments on pattern recogni-
tion training with the use of the method of support vec-
tors for various values of the stretch coefficient k.
Objects of each class in the training sample are uni-
formly distributed in the bounded two- or three-dimen-
sional space of features. The feature space was assumed
to be partitioned in advance by a fixed (preset) parti-
tioning hyperplane into two equal domains of features
of objects from the first and second classes. In the
course of the experiment, by considering a small num-
ber of objects from the training sample (2–10 in each
class), we tried to model the situation of the lack of
training material (the problem of a small sample).
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The classification error was estimated as the ratio of
the area (in the two-dimensional case) or volume (in the
three-dimensional case) incorrectly attached to
domains of objects of the first and second classes to the
total area (volume) of the bounded feature space (Fig. 1).

To determine the tendency of the influence of the
choice of characteristics of the form xj = (x1, x2, …, xn)T ∈
Rn or  = ( xj , xj , …, xj)T ∈  RN as features of
objects on the construction of a partitioning hyper-
plane, series of 1000 experiments each in the two- and
three-dimensional initial feature spaces for various
numbers of objects in both classes and at various values
of the stretch coefficients of the training population
were performed. The results of the experiments are pre-
sented in Fig. 2.

x j* x1
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T xN
T

CONCLUSIONS

The experiments confirmed the earlier theoretical
conjecture that the quality of recognition improves
when the classifier is constructed in the space of pro-
jection features. This approach can be used both in
the case of the featureless concept and in the frame-
work of the classical, “feature,” recognition. Under
the a priori assumption that the general population is
stretched along the distribution of classes, the use of
projection features may improve the quality of clas-
sification.
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Fig. 1. Optimal partitioning hyperplanes for features of the first (solid line) and second (dashed line) kinds. The stretch coefficient
of the sample was k = 3. The recognition error was 4.03% in the first case and 1.34% in the second case for the two-dimensional
space; for the three-dimensional space, the errors were 9.47 and 4.37%, respectively.
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Fig. 2. Experimental results. The percentage of recognition error for various k values and various dimensions of the initial space as
a function of the number of objects of each class in the training sample. Input (solid line) and projection (dashed line) features are
used. 
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