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A technique of training regularization in image recognition is considered. The main idea 

underlying this investigation consists in overcoming the small sample size problem by adding an 

subsidiary a priori information on interrelation among the image elements. 

1. Introduction  

It is typical for data analysis problems that several features measured at an object are not 

independent of each other. Image and signal recognition are glowing examples of this kind of da-

ta analysis problems.  

First, in this kind of problems, the number of features is essentially greater than the number 

of objects in a training set of typical size. Second, the specificity of feature registration usually 

implies their linear ( , 1,..., )tx t T x , or spatial ( , 1,..., , 1,..., )tsx t T s S  x  ordering. Third, 

the hypothesis that the features are “smooth” along the order axes is suitable in many cases, i.e., 

close values are typical for closely related features ( , )t tx x   or ,( , )ts t sx x    . As for signal analy-

sis, smoothly ordered features are usually the result of measuring the same physical value along 

an axis with a sufficiently small step. In the case of images, smoothness of features implies minor 

difference between brightness values at adjacent elements of the pixel grid.  

The large number of features leads to the small sample problem well known in data analy-

sis – a decision rule which exactly separates the objects of the training set has poor extrapolation 

properties. Two ways of solving this problem may be distinguished, namely, reduction of the fea-

ture space dimensionality, usually, by feature selection [1], and imposing constraints on the class 

of decision rules as a means of training regularization [2]. In this paper, we keep to the latter ap-

proach. To improve the prediction power of a pattern recognition algorithm, we suggest to take 

into account the known specificity of the respective kind of objects, namely, the ordering of fea-

tures and their smoothness.  

In many algorithms, the result of training is the vector of coefficients of a discriminant 

hyperplane immediately in the linear space of features or in a secondary linearized space. The 

idea of regularization we propose in this paper is utilization of the fact that any coefficient of the 

discriminant hyperplane is associated with some feature. If the positions of two features in the 

structure of an object (immediately successive values of a signal or adjacent pixels of an image) 

are close to each other, the corresponding coefficients of the discriminant hyperplane must also 

not be too different. Thereby, among the entire set of decision rules correctly fitting the trainer’s 

data, we choose only the subset that satisfies some a priori constraint.  

In paper [3], this regularization principle is applied to the signal recognition problem in 

terms of the popular support vector algorithm (SVM). In this paper, we evolve this technique as 

applied to images.  



2. The idealized image recognition problem  

The problem of face verification is a typical two-class images recognition problem. Some 

examples of normalized and scaled face images are shown in Figure 1.  

                                

Fig. 1.  

The gray level values of the elements of the pixel grid serve as the features of an image: 

( ; 1,..., , 1,..., ) n

tsx t T s S R   x , n TS . Even if we deal with relatively small images, the 

dimension of the resulting feature space is so huge that no training set can exceed it in size. For 

instance, if if 60T   and 40S  , the feature space dimension will be 2400n  .  

If we apply the principle of linear decision rule, it will be mathematically expressed as a 

2400-dimensional direction vector which is, actually, an image:  
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A pictorial representation of the optimal discriminant hyperplane, to 

be strict, its direction vector, computed by Vapnik’s SVM principle [4] 

for the above ten images (Figure 1) is shown in Figure 2.  

The coefficients of the discriminant hyperplane shown in Figure 2 

are not sufficiently smooth. At the same time, as we believe, it is just ig-

noring minor individual details of the training-set images what essentially 

contributes to good prediction properties of a recognition technique. A 

face image basically consists of quite large areas of forehead, eyes, 

cheeks, nose, and too excessive attention to inessential details (birth-

marks, wrinkles, face expression) does not improve the prediction.  

 

 
Fig. 2. 

 

3. The mathematical principle of smoothness-based training regularization  

Let  ( , ), 1,...,j jg j Nx , ,( , 1,..., , 1,..., )j ts jx t T s S  x ,  1, 1jg    be a training 

set from a universe containing two classes of images. The most popular SVM criterion of finding 

the optimal discriminant hyperplane ( ; 1,..., , 1,..., ) n

tsa t T s S R   a  (1) for two subsets set 

of objects whose convex hulls do not intersect lead to the well known quadratic programming 

problem in the feature space [4]:  
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It is convenient to solve this problem in the dual form with respect to the nonnegative La-

grange multipliers ( , 1,..., )j j N   at the inequality constraint associated with the objects of 

training set:  
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The direction vector of the optimal discriminant hyperplane a  (discriminant image) is the linear 

combination of the support training-set feature vectors (support images) 
,: 0j

ts j j ts jj
a g x

 
   

with coefficients j jg   produced by non-zero Lagrange multipliers 0j  . The discriminant im-

age completely specifies the recognition rule applicable to any new image (1).  

In this work, our aim is to modify the standard SVM criterion with the purpose to incorpo-

rate the available a priori information on the sought discriminant image, namely, the assumption 

that its mutually adjacent elements must not differ significantly from each other.  

To formalize the notion of “close” elements of the pixel grid, we consider the Euclidian 

distance between pair of pixels in the discrete image plane 
2 2

, ( ) ( ) 0ts t sd t t s s 
      , and 

introduce, on its basis, a nonnegative proximity function 
, 0ts t sp    . The form of this function is 

rather arbitrary and is to be tried experimentally. Some examples of proximity functions which 

define nonzero proximity only for adjacent elements are shown in Figure 3.  
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Fig. 3.  

 

We define the regularized training criterion as including an additional penalty upon the dif-

ference between spatially close coefficients of the discriminant image (discriminant hyperplane) 

in the following form:  
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Here  ,ts t sb  B  is the matrix ( )TS TS  responsible for the smoothness of the discriminant 

image  
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and the parameter 0  sets the regularization degree. The dual optimization problem corres-

ponding to (4) will have the form  

  
, , ,1

1 1 1 1 1 1

1

1
max

2

0, 0 2, 1,..., ,

N N T S T S
N

j j k ts t s ts j ts k j kj
j k t s t s

N

j j jj

g g f x x

g C j N

 
      



  
      

 
      

  



 (5) 

where  1

,( ) ts t sf

   F I B  is the dual regularization matrix ( )TS TS .  

4. Experimental study 

For the experimental study, we used a data set from the well known collection BioID Face 

DB (http://www.humanscan.de). For the two-class recognition problem considered in this paper, 

we chose images of two person. Some examples of these images are shown in Figure 1. The data 

base contains 236 face images of the selected two persons. We conducted 100 experiments, in 

each of which 10 images were randomly chosen as the training set, 5 images of the first and the 

second person. The remaining 226 images we used for testing. The averaged result is presented in 

Table 1.  

Table 1.  

Usual SVM training – smoothness coefficient 0   

An example of the optimal discrimi-

nant hyperplane: 

 

Average error rate in the test sets:   8,7% 

Regularized SVM training – smoothness coefficient 10   

An example of the optimal discrimi-

nant hyperplane: 

 

Average error rate in the test sets:   5,7%  

 

Of special interest is the choice of the regularization parameter 0  . It is seen from (2) 

that the regularized training criterion turns into the standard one if 0  . We studied the depen-

dence of the error rate in test set and the leave-one-out error in the training set from the values of 

http://www.humanscan.de/


 . The results are shown in Figure 4. It is seen that positive penalty values lead to improving the 

extrapolation properties.  
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Fig. 4.  

5. Conclusion 

A new method of overcoming the small-sample problem in image recognition is proposed. 

The idea of the method is incorporating a penalty on the non-smoothness of decision rule coeffi-

cients into the standard SVM training criterion. Experiments with face images has shown that the 

proposed modification essentially improves the prediction power of the SVM recognition rule.   
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