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Embedding a set of objects of arbitrary kind into a linear space by choosing an appro-
priate two-argument function possessing properties of inner product (kernel function) is 
a convenient approach to solving most glowing problems of modern informatics such 
as that of finding empirical regularities in sets of signals and symbolic sequences of dif-
ferent length. However, constructing kernel functions is no easy problem. In this work, 
we propose a sufficiently universal probabilistic principle of kernel function construc-
tion on sets of signals and symbol sequences of different length, which is based on in-
terpretation of every object as effect of random transformation of another object from 
the same set.  

 

Introduction 

The characteristic feature of the problem of 
finding empirical regularities [5] in sets of sig-
nals and symbol sequences is that the initial 
presentation of objects does not allow for 
forming a priori feature space of their suffi-
ciently informative characteristics, which 
would satisfy the requirements of the com-
pactness hypothesis. Examples of such objects 
are face shots obtained under different shoot-
ing angles and with various face expressions, 
handwritten symbols and signatures presented 
by pen motion paths, amino acid sequences 
forming protein polymeric molecules. The fea-
tureless approach to data analysis [1] is most 
adequate for such problems. It is based on 
finding some digital similarity measure of ob-
ject pairs and practically does not need evident 
indication of their feature vectors.  
 
The idea of featureless machine learning was 
proposed in works of M.A. Iserman, E.M. 
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Braverman and L.I. Rosonoer under the name 
of the potential function method [2], and later 
it was used in the support vector machine 
method created by V.N. Vapnik [4]. These 
methods are based on the notion of so-called 
kernel function, any real-valued function of 
two arguments ( , )K α α′ ′′ on a set of object 
pairs , Aα α′ ′′∈ whose values can be inter-
preted as inner product of elements of some 
hypothetical linear space representing initial 
entities of the real world. 
 
However, constructing a kernel function on a 
set of objects of arbitrary kind, which would 
reflect the claimed conception of the objects’ 
similarity and dissimilarity, is quite an in-
volved problem.  
 
Random transformation of the set of objects 

 
In this paper, we propose a sufficiently univer-
sal probabilistic principle of kernel function 
construction. The essence of the approach con-
sist in treating every object Aα ∈ as effect of 
a random transformation of another object of 
the same set ϑ α→ , Aϑ∈ . The only specific-
ity required of the set of objects A is the pos-
sibility to treat it as a probabilistic space and, 
hence, to define probability distributions by 
their densities with respect to an appropriate 



σ -finite measure. In particular, if the set A is 
finite or countable, the role of the probability 
density with respect to the counting measure is 
played by the probabilities of single events.  
 
We will suppose, that the probability distribu-
tion density ( )ζ ϑ , defined in the object set A ,
formally expresses the assumed popularity 
frequency of each object. A natural way to es-
timate the similarity of two object , Aα α′ ′′∈ is 
to evaluate the likelihood of the hypothesis 
that they origin from the same unknown ran-
domly chosen object Aϑ∈ as the common 
prototype:  
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The family of conditional distribution densities 
( | )ψ α ϑ , that determines the random trans-

formation ϑ α→ , associates each object α
with a function ( ) ( | )xα ϑ ψ α ϑ= on the entire 
set A , which can be naturally considered as 
representation of the object in the linear space 
of all real functions in A . Then, the two-
argument likelihood function (1) is inner prod-
uct of two corresponding functions with 
weight ( )ζ ϑ and, so, is a kernel function on 
the set of objects.  
 
A natural way to choose the probability distri-
bution ( )ζ ϑ follows from an additional as-
sumption on the properties of random transfor-
mation ( | )ψ α ϑ . We shall say that this trans-
formation is ergodic, if there exists the final 
probability density ( )ζ α that meets the inte-
gral equation  
 ( ) ( | ) ( )
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ϑ

ζ α ψ α ϑ ζ ϑ ϑ
∈
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and reversible, if the condition  
 ( ) ( | ) ( ) ( | )=ζ ϑ ψ α ϑ ζ α ψ ϑ α (3) 
holds for all , A∈ϑ α . Such terminology is 
suggested by the fact that condition (2) is 
equivalent to ergodicity of the Markov random 
process ( , 1, 2, 3, ...)s sα = defined by tran-
sition distributions 1( | )s s−ψ α α , and ( )ζ α is 
its final distribution on A . The condition (3) is 
equivalent to the reversibility of this Markov 
process, i.e. coincidence of its probabilistic 
properties in the forward and reverse direction.  
 
The reversibility of the random transformation 

( | )ψ α ϑ allows to express the kernel function 

through the double-step transformation 
α ϑ α′ ′′→ → defined by the family of condi-
tional distribution densities [2] ( | )ψ α α′′ ′ :

[2] [2]( , ) ( ) ( | ) ( ) ( | )K ′ ′′ ′ ′′ ′ ′′ ′ ′′= =α α ζ α ψ α α ζ α ψ α α .
Such definition of the kernel function is 
equivalent to (1), but it is preferable in some 
cases.  
 

Kernel function on set of sequences of 
arbitrary finite length 

 
Kernel function on set of sequences of arbitrary 
finite length ( , 1,..., )k k Nω α= = ∈Ω consti-
tuted from elements of the given set A∈α , in 
which probability kernel function has been al-
ready defined, can be constructed on basis of 
the random transformation of sequences 

( | )ϕ ω ω′′ ′ . You should notice, any transforma-
tion of some initial sequence 

),...,1,( Nkk ′=α′=ω′ to other sequence of 
other length ( , 1,..., )k k Nω α′′ ′′ ′′= =  inevitably 
have to be connected not only with elements 
change k kα α′ ′′′ ′′→ , but with removal of some 
elements from ω′ and addition new elements 
into ω′′ . Rules, which regulate removal and 
addition of elements, inevitably have to be dif-
ferent for symbol sequences and signals by 
virtue of its nature considerable difference.  
The difference consists not so much in charac-
ter of the set A , from which elements Ak ∈α
are scooped, as in a meaning, which is put in 
element combination of these elements in the 
unified regulated structure 

( , 1,..., )k k Nω α= = .

This paper considers only case of symbol se-
quences. Taking into account a signal specific-
ity leads to not great changes of the scheme 
considered here.  
 
A model of the random transformation of the se-
quence ( , 1,..., )k k Nω α′ ′ ′= =  in other sequence 

( , 1,..., )k k Nω α′′ ′′ ′′= =  can be constructed as 
the system of two probabilistic mechanisms. 
One of them is the random process 

( , 1, 2,3,...)tw h t= = , formed by independent 
choice of one of three variants of its continuation 

{ , , }th H h h h′ ′′∈ = on each step.  It defines a 
transformation structure, i.e. regulates random 
choice of positions, on which elements are re-



moved and added. The second mechanism de-
fines random law of element choice on each posi-
tion in sequence changed. In the model consid-
ered the first mechanism is general one for sym-
bol sequences and signals, thus the difference 
consists only in the second mechanism  
 
The structure of transformation of one sequence 
in other one can be represented as a random 
path on the graph (figure). Here diagonal ad-
vancement corresponds with transformation of 
the element of the first sequence in the respec-
tive element of the second sequence in accor-
dance with the given random transformation on 
the set of objects A . Horizontal advancement 
corresponds with gap of the next element of the 
first sequence, and vertical advancement corre-
sponds with forming of new element of the sec-
ond sequence, not depending on elements of the 
first one, in accordance with the final distribu-
tion on the set of objects ( )ξ α .
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The structure of sequence transformation as the random 
path on the graph and probabilistic rules of element’s 

choice of new sequence  
 

In the result of the random process w realiza-
tion initial sequence of length N ′ is trans-
formed to new sequence of other random 
length N ′′ . Probabilistic properties of the ran-
dom process w completely define the condi-
tional probability distribution on set of new 
sequence ( | )p N N′′ ′ lengths.  
 
We proved, that the sequence transformation 

( | )ϕ ω ω′′ ′ is ergodic and reversible one, if the 
random process of sequences lengths trans-
formation ( | )p N N′′ ′ is ergodic and reversible 
process. 
 

Specifically, this characteristic exists, if the 
random process w formed by independent 
choice of one of three variant of its continua-
tion h , h′ or h ′′ on each step, moreover the 
probability of symbol gap in initial sequence, 
i.e. choice h′ , is less than the probability of 
new symbol insertion in transformed sequence, 
i.e. choice h′′ . Then the distribution density 

( ) ( | ) ( )d
ϑ

ζ ω ϕ ω ω ζ ω ω
∈Ω

′′ ′′ ′ ′ ′= ∫
is the final distribution on the set of sequences 
of different length, and the function of two-
arguments ( , ) ( ) ( | )K ω ω ζ ω ϕ ω ω′ ′′ ′ ′′ ′= is the 
kernel function. 
 
The considered random principle of the kernel 
function constructing was realized on practice 
by the example of kernel function constructing 
on set of signatures, presented by pen motion 
paths, which form signals of different length.   
 
You should notice, the application of the con-
sidered approach is inevitably connected with 
appearance of some computing problems, and 
its decision is not at all trivial. Specifically, by 
virtue of the probabilistic character of the ker-
nel function, which is considered here, its val-
ues for different pairs of signatures are greatly 
small magnitudes, moreover they differ one 
from another on whole orders. Such values are 
not only inconvenient for their interpretation, 
but they also do practically impossible the 
construction of decision rules of recognition 
on their basis. For overcoming this obstacle we 
consider the initial kernel function as function 
referring to  class of so-called radial kernel 
functions, and then we replace it by the linear 
kernel function, which generate the given ra-
dial one.  

 
The linear kernel function is the simplest kind 
of kernel functions, its role can be played by 
the two-argument real function ( , )µ ω ω′ ′′ ,
named the commonness of two elements ω′
and ω′′ with respect to some center φ [3] 

2 2 21( , ) ( , ) ( , ) ( , )
2
r r rµ ω ω ω φ φ ω ω ω′ ′′ ′ ′′ ′ ′′ = + − 

where ( , )r ω ω′ ′′ is the function of dissimilarity 
of two objects, possessing the metrics character-
istics.  
 



We name the kernel function of kind 
( , ) ( , )linK ω ω µ ω ω′ ′′ ′ ′′= the linear one, as its 

using in the identification problem results in 
the family of linear decision rules. Along with 
the linear kernel function, other kind of kernel 
functions are also traditionally considered, 
such as the parametric families of polynomial  

[ ]( , ) ( , ) 1polK αω ω µ ω ω′ ′′ ′ ′′= +
and radial kernel functions 

2( , ) exp ( , )radK rω ω α ω ω′ ′′ ′ ′′ = −  .

We assume that the constructed kernel func-
tion is the radial one. Then we find the un-
known linear kernel function, which was 
formed from it by the respective transforma-
tion 
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It should be noticed that the expression (4) 
contains a combination of logarithms of the 
initial kernel function values, and, as the con-
sequence, values of the new kernel function 
become comparable by magnitude and con-
venient for their using when solving the prob-
lem of finding empirical regularities in sets of 
signals and symbol sequences of different 
length.  
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