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ABSTRACT  
The problem of on-line signature verification is considered 

within the bounds of the kernel-based methodology of pattern 
recognition and, more specifically, SVM principle of machine 
learning. In accordance with this methodology, any set of on-
line signatures as vector signals of individual length is repre-
sented by a two-argument function which measures the pair-
wise similarity between respective signals and possesses the 
properties of a kernel, i.e. inner product in a hypothetical lin-
ear space. Since the SVM principle completely predefines the 
algorithms of both training and recognition, it remains only to 
choose a kernel produced by an appropriate metric in the set 
of signatures, so that the genuine signatures of the same per-
son would be much closer to each other than those of differ-
ent persons. However, different viewpoints of signature simi-
larity lead, a priori, to different kernels. We propose a princi-
ple of fusing several kernels into an entire training and verifi-
cation technique. Experiments with the data base of the 
World Signature Verification Competition 2004 have shown 
that multi-kernel verification essentially decreases the error 
rate in comparison with decision rules based on single ker-
nels.  

KEY WORDS  
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1.  Introduction   
On-line signatures are vector signals of individual length 

which carry information on both visual signature patterns and 
dynamics of writing. In contrast to the off-line approach to 
signature verification which deals only with the final image 
scanned from a document, the on-line approach requires the 
presence of the signer at the time of capture, but, in return, 
makes use of much greater amount of information [1,2].  

Signature verification is a two-class signal recognition 
problem, in which it is required to check the hypothesis that 
the given signature belongs to the claimed person. During 
the more than 20-years long history of studying the problem 
of on-line signature verification [3], a plenty of ideas have 
been proposed and tested, practically all of which fall into 
two groups – feature-based [4] and function-based [5,6] 
methods. Any method of on-line signature verification, 
yields, finally, a metric in the set of signature signals.  

It is just this aspect of the problem of signature verifica-
tion which is addressed in this paper. The mathematically 
most complete methodology of utilizing dissimilarity or, in 
the inversed form, similarity between entities for allocating 
them over some classes is the kernel-based approach to 
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pattern recognition [7]. The main notion of this approach is 
that of the kernel function in the respective set of entities, 
which is defined as a symmetric two-argument function 
possessing the property to form positive definite matrix for 
any finite collection of entities. Such a function defines a 
metric in the set of entities like inner product in a linear 
space leads to the respective Euclidean metric, thus, it al-
lows for mentally embedding the original set of entities 
into a linear space with inner product.  

This property of kernel function allows for reformulating 
practically any of existing methods of on-line signature veri-
fication in the kernel-based terms. Such a reformulation sug-
gests a natural way of easily combining several different 
methods into an entire verification technique which is ex-
pected to outperform each of the original ones.  

In this paper, we apply the general principles of fusing 
several kernels worked up in [8,9] to the problem of on-
line signature verification. The advantages of the multi-
kernel approach to on-line signature verification are dem-
onstrated by experiments with the data base of the World 
Signature Verification Competition 2004.  

2.  Metrics and kernels in the set of signals 
produced by on-line signatures  

2.1  Metric in the set of on-line signatures  

The standard structure of the vector signal representing 
an on-line signature ( , 1,..., )s s Nω = =x  includes five 
components [10]: pen tip coordinates ( , )s s

hor verx x , pen tilt 
azimuth and altitude ( , )s s

az altx x , and pen pressure s
prx . The 

signal is also supplied by time stamp st  and button status 
(pen-down, pen-up).  

In addition, we supplement the vector signal by two 
variables computed from the coordinates – pen’s velocity 

s
velx  and acceleration s

accx . So, we consider on-line signa-
ture signals as consisting of seven components.  

For comparing pairs of signals [ ( , 1,..., ),s s N′ ′ ′ω = =x  
]( , 1,..., )s s N′′ ′′ ′′ω = =x  of different lengths, we use the principle 

of dynamic time warping [6] with the purpose of aligning the 
sequences, i.e. bringing them to a common length. Each ver-
sion of alignment ( , )w ′ ′′ω ω  is equivalent to a renumbering 
the elements in both sequences ,( , 1,..., ),

kw ww s k N′′ ′ω = =x  

,( , 1,..., )
kw ww s k N′′′′ ′′ω = =x , wN N ′≥ , wN N ′′≥ . 

Let W  be the set of all alignments of two signals ′ω  and 
′′ω . The best alignment €( , )w ′ ′′ω ω  is defined by the condi-

tion  



{
( )}

2

1 1

1

2

, ,€( , ) arg min || ||

                                 [ ] [ ] ,k k k k

w

k k

w

kw W

k

N
w s w s

N

w

I s s I s s+ +

=∈

=

′ ′′′ ′′ ′ ′′ω ω = − +

′ ′ ′′ ′′β = + =

∑
∑

x x
 (1) 

where [ ]I  is indicator function of the respective event, 
which equals 1 if the condition in brackets is met and 0 
otherwise. The first sum in the criterion (1) is the average 
squared Euclidean distance between corresponding ele-
ments of the vector signals, and the second sum imposes 
penalty β  upon each repetition of elements.  

Before time warping, each component of each vector 
signal has to be normalized, for instance, by the mean 
value and standard deviation:  
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Once the best alignment (1) is found, it appears natural 
to consider the value  
 2€

1 € €, ,( , ) || ||w
k kk

N
w s w s= ′ ′′

′ ′′ ′ ′′ρ ω ω = −∑ x x    

as the degree of dissimilarity between the signals ′ω  and 
′′ω . It is easy to prove that the two-argument function 
( , )′ ′′ρ ω ω  is a metric in the set of on-line signatures:  

 ( , ) 0, ( , ) 0 if ,
( , ) ( , ) ( , ).

′ ′′ ′ ′′ρ ω ω = ρ ω ω ≥ ω ≠ω
′ ′′′ ′ ′′ ′′ ′′′ρ ω ω ≤ρ ω ω +ρ ω ω   (2) 

2.2  Transformation of a metric into radial kernel  

Whereas metric (2) evaluates dissimilarity of on-line sig-
natures, function  
 2( , ) exp ( , )K ′ ′′ ′ ′′⎡ ⎤ω ω = −αρ ω ω⎣ ⎦   (3) 
will have the sense of their pair-wise similarity. If coeffi-
cient α  is large enough, this function will form positive 
semidefinite matrix ( , ); , 1,...,i jK i j N⎡ ⎤ω ω =⎣ ⎦  for a finite 
collection of signals, for instance, the training set.  

A two-argument function ( , )K ′ ′′ω ω  defined in a set of 
real-world entities of arbitrary kind ω∈Ω  is said to be kernel 
function in Ω , if it forms positive semidefinite matrices 

( , ); , 1,...,i jK i j m⎡ ⎤ω ω =⎣ ⎦  for all finite subsets of this set [7]. 
Any kernel ( , )K ′ ′′ω ω  embeds the set of entities into a real 
linear space with inner product Ω⊆Ω

~ , in which the null 
element Ω∈φ  and linear operations Ω→Ω×Ωω′′+ω′ ~~~:  and 

Ω→Ω×ω
~~: Rc  are defined in a special way, whereas the 

role of inner product is played by the kernel function itself 
[11].  

This circumstance makes it possible to develop very sim-
ple algorithms of pattern recognition for, generally speaking, 
arbitrary real-world entities by exploiting practically all 
known methods which had been worked up for linear spaces.  

Function (3) is usually called radial kernel function pro-
duced by a metric. 

2.3  The finite set of kernels studied in experiments  

The original metric (2) and kernel (3) produced by it are 
determined by several characteristics of the signal process-
ing procedure, thus, we have, actually, a family of kernels. 
We don’t pursue here the aim to choose the “most appro-
priate” metric, which would lead to the kernel providing 
the best accuracy of signature verification. Our aim is to 
show advantages of the approach utilizing several metrics 

(kernels) at once, as against that based on a single prede-
fined metric (kernel).  

We study the set of kernels formed by two parameters – 
first, the subset { }, , , , ,s s s s s s s

prhor ver az alt vel accX X x x x x x x x∗⊆ =  
in the full set of seven components constituting the vector 
signals of on-line signatures ( , )i

s sx i X= ∈x , and, second, 
the value of positive penalty β  in the time warping crite-
rion (1). Despite the important role played by positive co-
efficient α  in the transformation (3) of a metric into ker-
nel, we use, in this work, the fixed value 0.25α =  chosen 
experimentally and do not vary it.  

Six subsets of signal components are studied, each with 
two values of warping penalty 10β =  and 20β = . So, the 
full number of kernels amounts to twelve (Table 1).  

Table 1. The kernels studied in the experiments.  

Kernel  Subset of signal  
components 

1( , )K ′ ′′ω ω
10β =  

2( , )K ′ ′′ω ω
20β =  

pen coordinates 
{ },s s

hor verX x x∗=  

3( , )K ′ ′′ω ω
10β =  

4( , )K ′ ′′ω ω
20β =  

pen tilt
{ },s s

az altX x x∗=  

5( , )K ′ ′′ω ω
10β =  

6( , )K ′ ′′ω ω
20β =  

pen pressure  
{ }s

prX x∗=  

7( , )K ′ ′′ω ω
10β =  

8( , )K ′ ′′ω ω
20β =  

coordinates, velocity, acceleration 
{ }, , ,s s s s

hor ver vel accX x x x x∗=  

9( , )K ′ ′′ω ω
10β =  

10( , )K ′ ′′ω ω
20β =  

coordinates, tilt, pressure 
{ }, , , ,s s s s s

prhor ver az altX x x x x x∗=  

11( , )K ′ ′′ω ω
10β =  

12( , )K ′ ′′ω ω
20β =  

all components 
{ }, , , , ,s s s s s s s

prhor ver az alt vel accX x x x x x x x∗=  

3.  The support-vector method of training in the 
linear space of on-line signatures produced by a 
single kernel  

A commonly adopted kernel-based approach to the two-
class pattern recognition problem is widely known under 
the name of Support Vector Machines (SVM) [7].  

Let a kernel ( , )K ′ ′′ω ω  be defined in the set of all sig-
nals ω∈Ω  produced by on-line signatures. Since any ker-
nel embeds the original set of entities into a linear space 
Ω ⊂ Ω  supplied with inner product ( , )K ′ ′′ω ω  produced 
by a continuation of the given kernel function, all real-
world entities ω∈Ω  along with hypothetical results of 
linear operations ′ ′′ω + ω  and cω  can be considered as 
vectors in that linear space.  

The class of linear functions in Ω
~

, just as in any linear 
space, is defined by two parameters Ω∈ϑ

~
 and R∈b   

 bKy +ωϑ=ω ),()( , ω∈Ω , in particular, Ω∈ω .  (4) 
We shall call parameter ϑ  the direction element of the linear 
function. The parameters Ω∈ϑ

~
 and R∈b  determine a 

classification of the set of signatures into two classes:  
( ) ( , ) 0 class(1), ( ) 0 class(-1).y K b yω = ϑ ω + > → ω ≤ →  (5) 

The only reasonable choice of ϑ  will be a linear com-
bination of really existing objects 

1
€ N

j jj
a

=
ϑ = ω∑  in accor-

dance with the linear operations induced in the extended 
set Ω

~
 by the kernel function ),( ω′′ω′K . As being inner 



product in Ω
~

, the kernel function is linear with respect to 
its arguments, hence, the linear function resulting from 
training will include the values of the kernel function only 
for objects existing in reality =ω)(€y ∑ =

ωωN
j jj Ka1 ),( .  

Let { }( , ); 1,...,j jg j N∗Ω = ω =  be a training set of genu-
ine signatures of a client 1jg =  and signatures of other peo-
ple including, maybe, skilled forgeries 1jg =− . The SVM 
principle of training is aimed at finding the optimal discrimi-
nant hyperplane (5) which classifies the entities of the train-
ing set as precisely as possible by solving the quadratic pro-
gramming problem [7]  

1
( , ) min( , , , 1,... ),

( ; , ) ( , ) 1 , 0, 1,... .

N
j jj

j j j j j j

K C b j N
g y b g K b j N

=
⎧ ϑ ϑ + δ → ϑ δ =⎪
⎨

ω ϑ = ϑω + ≥ −δ δ ≥ =⎡ ⎤⎪ ⎣ ⎦⎩

∑ (6) 

Here 0C >  is a sufficiently large coefficient providing a trade-
off between the intent to have the greatest margin of separating 
the two classes and the number of errors in the training set.  

Such a formulation of the training problem immediately 
leads to the optimal direction element being linear combi-
nation of elements of the training set  
 : 0

€
j j jjj gλ >ϑ = λ ω∑ ,  (7) 

where 0jλ ≥  are Lagrange multipliers at inequality con-
straints in (6), which are solutions of the dual quadratic 
programming problem  

1 1 1

1

(1 2) ( , ) max,

0, 0 2, 1,..., .

N N N
j j l j l j lj j l

N
j j jj

g g K

g C j N
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=
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As a rule, only a small number of Lagrange multipliers 
differ from zero 0jλ > . The respective entities of the 
training set are called support entities (support vectors, 
since they are treated as elements of the linear space Ω

~
), 

because only these elements affect the direction element of 
the optimal discriminant hyperplane (7). It is easy to see 
that the constant b  is defined by the formula  
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The result of training is completely represented by the fi-
nite set of support entities (signatures) being subset of the 
training set { }sup ( , ); 1,...,j jg j N∗ω∈ Ω ⊂ Ω = ω =  and La-
grange multipliers at them ( )λ ω . New entities ω∈Ω  which 
did not participate in the training set are to be compared with 
the support entities and classified by the rule  
 sup( ) ( ) ( ) ( , ) 0 or 0.y g K bω∈Ωω = ω λ ω ω ω + > <∑   (10) 

4.  Principles of combining several kernels  
The idea of combining several kinds of object represen-

tation in pattern recognition systems is considered in the 
literature primarily in context of multimodal establishing 
the identity of a person. Face, voice, fingerprint, off-line 
and on-line signatures are examples of different modalities, 
fusion of which promises to essentially improve the reli-
ability of identification [12].  

Different modalities imply capturing different kinds of 
signals, and, from this point of view, an on-line signature 
verification system is a unimodal one. However, there is a 

deep analogy between different physical modalities and dif-
ferent metrics or kernels defined in the same set of signals. It 
appears reasonable to consider the problem of combining 
several kernels within the bounds of the same physical mo-
dality as combining different informational modalities.  

The way of fusing several modalities by combining clas-
sifiers independently built for each modality has received 
primary attention of the pattern recognition community [13]. 
A technique of fusing classifiers as a way of multi-kernel on-
line signature verification is considered below in Section5.  

Techniques of fusing several kernels have shown high 
efficiency in combining several sources of miscellaneous 
sources of information, but lead to the challenging compu-
tational problem of quadratically-constrained quadratic 
optimization [14,15]. Below, in Section 6. we propose an 
alternative technique of kernel fusion and apply it to the 
problem of multi-kernel on-line signature verification.  

5.  Sum rule of fusing kernel-based classifiers  
The schemes of classifier fusion that have been dis-

cussed in the literature are very different [13]. A common 
theoretical framework for combining classifiers developed 
in [16] is based on the assumption that the output of each 
particular i th classifier has the form of the a posteriori 
class-membership probabilities  
 { }(1| ),..., ( | )i i i ip p mx x , 1 ( | ) 1i i

m
k p k= =∑ x ,   

with respect to the entity represented at the input by the 
feature vector ix . Under the assumption that each class 

1,...,k m=  is modeled by independent probability distribu-
tions in the classifier-specific feature spaces ix , 1,...,i n= , 
the authors investigated various strategies of final decision 
making, derived the respective rules of combining the out-
puts of classifiers, and experimentally compared all the 
rules on several data sets. As a result, it turned out that the 
so-called sum rule of classifier fusion  
 1,..., 1

€ arg max (1 ) ( ) ( | )i i
n

k m ik n p k p k= =
⎡ ⎤= − +⎣ ⎦∑ x ,   

where { }(1),..., ( )p p m  are a priori probabilities of classes, 
essentially outperforms all other schemes.  

In the two-class situation { }1, 1k ∈ − , it will be enough 
to use only one a posteriori probability at the output of 
each classifier, for instance, (1| )i ip x , and only one a pri-
ori probability (1)p :  

 1 1

€0 1,( ,..., ) ( ) €0 1,n i i
n
i

ky y d
k=

⎧> → == + ⎨< → = −⎩
∑x x x   (11) 

where ( ) ( | ) (1)i i i iy p k p= −x x , (1) 1 2d p= − . If there are 
no a priori preferences between the classes, we have 

(1) 1 2p =  and 0d = .  
It is just this method which we use as the prototype for 

fusing several kernel-based decision rules of on-line signa-
ture verification. Each particular classifier based on the 
specific kernel ( , )iK ′ ′′ω ω  is determined by the kernel-
specific set of support signatures along with their Lagrange 
multipliers { }sup( ), iλ ω ω∈Ω  and produces the score func-
tion (10) to be applied to new signatures:  
 sup( ) ( ) ( ) ( , )i i

i
y g K bω∈Ωω = ω λ ω ω ω +∑ .  (12) 

However, this score has no explicit probabilistic mean-
ing. But what allows for immediate summation of the clas-



sifier scores in (11) is the equal scale of all the outputs 
rather than their probabilistic nature itself. In accordance 
with the SVM principle of training (6), the outputs of the 
kernel based classifiers are equally scaled, too, in this case, 
to the interval ( 1,1)− :  

 
€1 1 with full confidence,

€( ) 0 neutral decision ?,
€1 1 with full confidence.

i

k
y k

k

⎧≥ → =⎪
ω = → =⎨

⎪≤− → = −⎩
   

For this reason, to construct a multi-kernel on-line signa-
ture verification decision rule on the basis of the classifier 
fusion principle, we fuse the kernel-specific classifiers by 
simply summing their scores (12):  

1

€1 1, full confidence acceptance,
€1 0 1, acceptance,( ) ( ) €0 1, rejection,
€1 1, full confidence rejection.

n
ii

k
ky y
kn
k

=

⎧≥ → = −
⎪⎪> → =ω = ω ⎨< → =⎪
≤− → =− −⎪⎩

∑ (13) 

6.  Subset of relevance kernels resulting from 
kernel fusion  

Several recent papers considered the problem of kernel 
fusion. In this paper, we apply the method proposed in [8] 
to signals produced by on-line signatures.  

This method is essentially underlain by the idea origi-
nally proposed in [17] as a means of constructing Relevance 
Vector Machines (RVM). In accordance with the RVM meth-
odology, in contrast to the principle of Support Vector Ma-
chines (SVM) considered in Section 3. the discriminant hy-
perplane is to be defined not by the entities of the training set 
occurring in the active inequality constraints in (6) and called 
support entities, but by a linear combination of, generally 
speaking, all training set elements, in which, however, the 
majority of coefficients are close to zero. The remaining enti-
ties immediately forming the discriminant hyperplane are 
called in [17] relevance entities (vectors).  

In this paper, following [8], the mathematical approach 
developed in [17] is used in a completely “transversal” way 
– not for choosing most appropriate entities in the training 
set, but for choosing most appropriate kernels. By analogy 
with [17], we call the kernels selected as result of training the 
relevance kernels.  

In the case of the on-line signature verification problem, 
the subset of relevance kernels resulting from training will be 
individual for each person and emphasize the specificity of 
his/her signatures.  

Let ),( ω′′ω′iK , ni ,...,1= , be the kernel functions de-
fined on the same set of on-line signatures Ω∈ω . These 
kernels embed the set Ω  into different linear spaces 

iΩ⊂Ω
~

, ni ,...,1= , with different inner products and, re-
spectively, different linear operations. It is convenient to 
treat the n  linear spaces jointly as Cartesian product  

 { }1 1... ,..., :n n i iΩ = Ω × × Ω = ω =< ω ω > ω ∈ Ω   (14) 

formed by ordered n -tuples of elements from 1,..., nΩ Ω . 
The kernel function (i.e. inner product) in this linear space 
can be defined as the sum of the kernel functions (inner 
products) of the corresponding components in any two n - 
tuples >ω′ω′=<ω′ n,...,1  and >ω′′ω′′=<ω ′′ n,...,1 :  

 ∑ =
ω′′ω′=ω ′′ω′ n

i iiiKK 1 ),(),( , Ω∈ω ′′ω′
~

, .  (15) 

An actual signature signal Ω∈ω  will be represented by 

its n -fold repetition Ω>∈ωω=<ω
~

,..., . Then, any real-
valued linear function Ω → R  specified by the choice of 

parameters Ω∈ϑ
~

 and R∈b  will define a discriminant 
hyperplane in the combined space Ω   

1
( ) ( , ) 0 acceptance, 0 rejectionn

i ii
y K b

=
ω = ϑ ω + > → < →∑ ,(16) 

where 1,..., n< ϑ ϑ >∈Ω  is a combination of hypothetical 
elements of particular linear spaces produced by particular 
kernel functions ),( ω′′ω′iK .  

Thus, to define a discriminant function in the set of sig-
natures by combining several kernel functions ),( ω′′ω′iK , 
we have, first of all, to choose, as parameters, one element 
in each of linear spaces ii Ω∈ϑ

~
 into which the kernel 

functions embed the original set iΩ⊆Ω
~

. It should be 
marked that the smaller the norm of the i th parameter in 
its linear space ),(2

iiii K ϑϑ=ϑ , the lesser the influence 
of the respective summand on the value of the function 
(16). If 0),( →ϑϑ iiK , i.e. iii Ω∈φ≅ϑ

~
, the i th kernel 

function will practically not affect the function.  
This means that the parametric family of discriminant 

functions (16) implies also an instrument of emphasizing 
“adequate” kernel functions with respect to the available 
training set and suppressing “inadequate” ones. Which 
kernel functions should be considered as adequate is the 
key question for providing a good generalization perform-
ance of the decision rule when it is applied to signatures 
not represented in the training set.  

Since the class of discriminant functions incorporating 
all the kernels is chosen (16), it is possible to apply to the 
training set of genuine signatures of a client 1jg =  and 
forgeries 1jg =−  the same SVM criterion of training (6), 

but in the combined space Ω , for this time. Such a crite-
rion implies minimization of the squared norm of the com-
bined direction element 2|| || minϑ → , 1( ,..., )nϑ = ϑ ϑ ∈Ω . 

However, the norm in Ω
~

 may be measured in several 
ways. In particular, any linear combination of kernel func-
tions with nonnegative coefficients also possesses all the 
properties of norm 2

1
|| || (1 ) ( , )n

i i i ii
r K

=
ϑ = ϑ ϑ∑ . In this 

case, the criterion 
1
(1 ) ( , ) minn

i i i ii
r K

=
ϑ ϑ →∑  will try to 

avoid kernels with small ir . If 0=ir , and the respective 
kernel will not participate in forming the discriminant 
function. Thus, the values ir  play the role of weights with 
which the kernels participate in forming the decision rule.  

The idea of adaptive training consists in jointly inferring 
the direction elements iϑ  and the weights ir  from the 
training set by additionally penalizing large weights:  

[ ]1

1 11

1

(1 ) ( , ) log

    min( ,..., , ,..., , , , 1,... ),

( , ) 1 , 0, 1,... .

n
i i i i ii

N
j n n jj

n
j i i j j ji

r K r

C r r b j N

g K b j N

=

=

=

⎧ ϑ ϑ + +
⎪⎪ δ → ϑ ϑ δ =⎨
⎪ ⎡ ⎤ϑ ω + ≥ −δ δ ≥ =⎪ ⎣ ⎦⎩

∑
∑
∑

(17) 



This adaptive training criterion displays a pronounced ten-
dency to emphasize the kernels which are “adequate” to 
the training data and to suppress up to negligibly small 
values the weights ir  at “redundant” ones. We call rele-
vance kernels those of the initial set of kernel which obtain 
essentially nonzero values in the result of minimizing the 
criterion (17).  

The reasoning for the adaptive training criterion (17) is a 
paraphrase, in slightly different terms, of the reasoning for 
the RVM principle of training [17]. It is based on treating the 
unknown direction elements ii Ω∈ϑ

~
 in each of the linear 

spaces iΩ
~

 as hidden independent random variables whose 
mathematical expectations coincide with the respective null 
elements iii Ω∈φ=ϑ

~
)(M . The parameter ir  has the sense 

of the unknown mean-square distance of the random direc-
tion element from the null element. Then (17) is equivalent 
to finding the joint maximum-likelihood estimate of the vari-
ables nϑϑ ,...,1  and their variances nrr ,...,1  under the addi-
tional assumption that each direction element iϑ  is a priori 

normally distributed in the respective linear space iΩ
~

.  
It can be shown [8] that the following iterative proce-

dure solves the problem (17):  
 1

: 0
k k k
i i j j jk

jjr g−
λ >ϑ = λ ω∑ ,  (18) 

 1 2
: 0 : 0( ) ( , )k k k k

i i i j l j lk k
j lj lr r K−

λ > λ >= ω ω λ λ∑ ∑ .  (19) 

At each iteration k , the Lagrange multipliers 
1 0,..., 0k k

Nλ ≥ λ ≥  are to be found as the solutions of the 
dual quadratic programming problem having the same 
structure as (8):  

1 1 1 1

1

1 ( , ) max,
2

0, 0 2, 1,..., .

N N N n k
j j l i j l j lj j l i

N
j j jj

g g r K

g C j N
= = = =

=

⎧ ⎡ ⎤λ − ω ω λ λ →⎪ ⎣ ⎦⎨
⎪ λ = ≤ λ ≤ =⎩

∑ ∑ ∑ ∑
∑

 

Updating the constant kb  by analogy with (9) does not 
offer any difficulty. As a rule, the process converges in 
10-15 steps.  

The abstract variables i
k

i Ω∈ϑ
~)(  (18) are linear combi-

nations of the training-set signatures in the sense of linear 
operations induced by the kernel functions as inner prod-
ucts in the respective linear spaces. Substitution of (18) and 
(19) into (16) eliminates )(k

iϑ  and gives the completely con-
structive estimate of the discriminant function (16) after each 
iteration:  

( 1) ( )
1 ( ): 0€ ( ) ( , ) 0 or 0nk k k k

i j j i ji k
jjy r g K b−

= λ >ω = λ ω ω + > <∑ ∑ .  

7.  Structure of experiments  
In the experiment, we used the database of the Signature 

Verification Competition 2004 [18] that contains signa-
tures of 40 persons.  

For each person, the training set consists of 800 signa-
tures, namely, 10 signatures of the respective person, 10 
skilled forgeries (attempts to emulate the signature dynam-
ics of this person), and 780 random forgeries formed by 
390 original signatures of other 39 persons and 390 skilled 
forgeries for them. The test set for each person consists of 
59 signatures, namely, 10 original signatures, 10 skilled 

forgeries, and 39 random forgeries. Thus, the total number 
of the test signatures for 40 persons amounts to 2360.  

Six different metrics were simultaneously measured for 
each pair of signature signals in accordance with the time 
warping (Section 2.1 , and, respectively, twelve different 
kernels were computed which are specified in Table 1 in 
Section 2.3 .  

8.  Experimental results  
We tested 14 ways of training, namely, based on each of 

the initial kernels 1 12( , ),..., ( , )K K′ ′′ ′ ′′ω ω ω ω  separately (Sec-
tion 3. ), fusion of classifiers resulted from each kernel 
(Section 5. ), and fusion of all kernels (Section 6. ). The 
error rates in the total test set of 2360 signatures are shown 
in Table 2.  

It is well seen that the combined kernel obtained by 
kernel fusion essentially outperforms each of the single 
ones and the technique based on the sum rule of classifier 
fusion.  

But as to the sum rule of classifier fusion, this technique 
ranks essentially below not only the kernel fusion but also 
some of single kernels. This result is attributable to the 
very idea of combining classifiers, because this technique 
essentially rests on the assumption that signal properties 
perceived by single classifiers are independent of each 
other. This assumption is quite plausible if completely dif-
ferent modalities are fused, like signatures, face images 
and voice, but if the difference between the kernels to be 
combined is caused only by different methods of measur-
ing the pair-wise similarity in the same set of signals, the 
respective informational modalities cannot be considered 
as independent.  

For each of 40 persons whose signatures made the data 
set, the procedure of kernel fusion has selected only one 
relevance kernel which turned out to be most adequate to 
his/her handwriting. In each case, the relevance kernel ob-
tained nonzero weight 1.0ir ≥ , whereas the weights at 
other kernels were assigned negligibly small values 

510ir
−≤ . Table 3 shows the chosen relevance kernels in 

accordance with the numbering in Table 1.  

9.  Conclusions  
Establishing the identity of a person by his/her on-line 

signature is inevitably concerned with the necessity of 
measuring similarity between vector signals of different 
length produced by signatures. For comparing pairs of on-
line signatures, we use the principle of dynamic time warp-
ing with the purpose of aligning the signals. The numerical 
result of signal comparison is represented in the form of a 
kernel function, what allows us to apply mathematically most 
advanced methods of pattern recognition to the problem of 
on-line signature verification.  

However, a kernel in the set of vector signals of different 
length can be generated in different ways, and it is impossible 
to choose the most appropriate kernel a priori. To overcome 
this difficulty, we have developed a method of fusing several 
kernels into an entire on-line signature verification technique.  

The experiments on a large data base of on-line signa-
tures has shown that the proposed technique essentially 
outperforms as classifiers based on single kernels as well 
as the principle of combining several single-kernel classifi-



ers. More over, the new technique has shown its ability to 
choose the most relevant kernel that emphasizes the indi-

vidual specificity of the signature of each person.  



Table 2. Error rates in the test set for the single initial kernels versus classifier fusion and kernel fusion.  

Single kernels  
1 2 3 4 5 6 7 8 9 10 11 12 

Classif. 
fusion 

Ker-
nel 

fusion 
Number and percentage of errors in the total amount of 2360 test signatures  

12 
0.51 % 

16 
0.68 % 

562 
23.81 % 

485 
20.55 % 

65 
2.75 % 

81 
3.43 %

42 
17.80 %

18 
0.76 %

12 
0.51 %

14 
0.59 %

19 
0.81 %

16  
0.68 % 

42  
1.78 % 

9  
0.38 % 

Table 3. Relevance kernels chosen by the kernel fusion algorithm for each of 40 probationers.  

Probationers  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Relevance kernels (in accordance with numbering in Table 1)  
12 1 5 5 5 1 1 2 1 2 10 1 10 1 8 1 5 5 11 1 

Probationers  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Relevance kernels (in accordance with numbering in Table 1) 
9 1 1 2 5 9 5 1 10 10 1 1 5 2 1 1 2 5 1 1 
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