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In data analysis, when quantitatively comparing two signals or symbolic sequences of 
different length, it is the traditional practice to evaluate the best similarity attainable via 
their alignment. Such a pair-wise similarity measure does not possess in principle the 
extremely desired property of inner product and, so, is useless for constructing kernel-
based techniques which allow for harnessing the most developed linear methods of data 
analysis. In this work, we propose a mathematical framework for pair-wise similarity 
comparison between sequences of different length on the basis of computing a linear 
combination of conditional similarity values over all the alignments instead of the 
search for the best one. The conditions are proved under which the resulting similarity 
measure possesses all the properties if inner product.  

 

Introduction   

Sequences of different length ( ,k kω = α =  
1,..., )Nω  are a typical kind of objects in data 
analysis. The primitives k Aα ∈  making se-
quences may be real numbers, vectors or sym-
bols from an alphabet. In the former two cases 
the sequences are scalar or vector signals, and 
in the latter case it is generally agreed to name 
them symbolic sequences.  
 
Person identification via on-line signature 
processing, spoken command and continuous 
text recognition, prediction of protein proper-
ties, functions and structure from amino acid 
sequences, all these are well-known examples 
of data analysis problems concerned with the 
necessity to process sequences of different 
length.  
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A convenient instrument of solving such prob-
lems are the methods based on the notion of 
kernel function [1,2] – a real function of two 
arguments whose values for any finite collec-
tion of objects form a positive semidefinite ma-
trix. A kernel function ( ', '')K ω ω  defined on the 
set arbitrary objects ω∈Ω  embeds the initial 
set into a linear space Ω ⊇ Ω�  in which it acts 
as inner product. When dealing with objects of 
arbitrary kind, such an embedding allows for 
harnessing practically any classical data-
analysis methods developed for linear spaces 
and avoid the intermediate stage of choosing a 
vector of numerical features ( ) nRω ∈x  which 
would define the inner product in the traditional 
way ( )( ', '') ( ') ( '')TK ω ω = ω ωx x . The search for 
numerical features is especially problematic for 
sequences of different length.  
 
Various ways of introducing a kernel function 
on the set of sequences of different length may 
be proposed. In this paper, we first outline a 



sufficiently general mathematical structure of 
kernel function, adequate to many practical 
problems, and then consider a particular case 
of that structure which leads to a simple algo-
rithm of computing the kernel for any two 
given sequences.  

Kernel on the set of primitives  

Let us assume that the set of primitives Aα ∈  
has the structure of a linear space with an arbi-
trary inner product (kernel function) ( ', '')μ α α , 

then the value ( )1 2( , )μ α α  is a norm in it.  
 
The interpretation of the set of primitives as an 
inner product linear space appears quite natu-
ral for signals which primordially are se-
quences of real number or vectors. It can be 
shown that this interpretation remains valid 
also for amino acid sequences of proteins, 
which are symbolic sequences over the alpha-
bet of twenty amino acids existing in the na-
ture, if the similarity between any two amino 
acids is measured as the probability of their 
common origin from the same unknown amino 
acid, as it is generally adopted in molecular 
biology [3].  

The set of alignments of two sequences  

If all sequences had the same length { ( ,kΩ= ω= α  

}1,..., )k N const= =  then, for instance, the product 

( ', '')K ω ω =
1

( ' , '' )N
k kk=

μ α α∏  would possess all 
the properties of a kernel on the set Ω , because it 
is known that the product of any number of 
kernels is a kernel, too [4]. We deal, however, 
with a set of sequences of different length 

{ }( , 1,..., )k k NωΩ = ω = α = , and such a 
method is applicable only after an alignment 
of the sequences being compared to a common 
length.  
 
An alignment w  of two sequences 'ω =  
( ' , 1,..., ')k k Nα =  and '' ( '' ,k kω = α = 1,..., '')N , 

' , ''k k Aα α ∈ , is understood as bringing them to 
the same length via insertion of some “empty” 
aligning elements at some positions in each of 
the sequences with the respective renumbering 
of the elements: ,' ( ' , 1,...,| |)w w j j wω = α =  and 

,'' ( '' , 1,...,| |)w w j j wω = α = , where | | max{ ', ''}w N N≥  

is the common length of the aligned sequences. 
As the aligning element, we arbitrarily choose in 
the linear space of primitives an element 0 Aα ∈  
of the unity norm 0 0( , ) 1μ α α = .  
 
The set of all alignments of a pair of sequences 

', ''< ω ω >  of lengths 'N  and ''N  will be de-
noted as ' ''N NW . Any alignment ' ''N Nw∈W  
may be represented as a path in the graph with 
horizontal, diagonal and vertical edges ori-
ented from left to right and from top to bottom 
as shown in Figure 1. In this graph, the hori-
zontal direction will be associated with the 
first sequence ' ( ' , 1,..., ')k k Nω = α = , and the 
vertical direction – with the second sequence 

'' ( '' , 1,..., '')k k Nω = α = .  
 
We shall consider any alignment ' ''N Nw∈W  as 
a sequence of values from the three-element 
set: ( , 1,...,| |)kw h k w= = , { , ', ''}kh h h h∈ . The 
value 'kh h=  means a horizontal step associ-
ated with insertion of an “empty” aligning 
element in the first sequence, the value kh h=  
is interpreted as a diagonal step which corre-
sponds to the absence of insertions, and 

''kh h=  signifies a vertical step denotative of 
insertion of an “empty” element in the second 
sequence. The symmetric analog of any 
alignment w  resulting from replacement each 
step 'kh h=  by ''kh h=  and vise versa will be 
denoted by symbol Tw , so that '' 'N N =W  

' ''{ : }T
N Nw w∈W .  

A system of weights on the set of alignments 
and the structure of the kernel function  

Let us associate any alignment w  of two se-
quences 'ω  and ''ω  with the value  

| |

, ,
1

( ', ''| ) ( '', '| ) ( ' , '' ),
w

T
w j w j

j

K w K w
=

ω ω = ω ω = μ α α∏  (1) 

meant as the measure of the alignment-
dependent conditional similarity of two se-
quences.  
 
Further, let us choose a system of non-negative 
weights of pair-wise alignments ( ) 1p w ≥   



  1'α   2'α   ''Nα   "  
 1''α  
 2''α  

''''Nα  

 #  

proper part of alignment  
( ),( ) , 1,...,| ( ) |w jw w h j w w= =� �  

alignment as a whole  
( ), , 1,...,| |w jw h j w= =  

 'q  
 'q   q  

 
Figure 1. Two different alignments of a pair of sequences.  

 
 
which is common for all the pairs of lengths of 
sequences 'N  and ''N , and expresses some a 
priori preferences on the set of different 
alignments of the same pair.  
 
The traditional way of measuring the similarity 
between two sequences is based on the search 
for the alignment which maximizes their con-
ditional similarity with respect to the weight 

' ''
( ', '') max ( ', ''| )

N NwK K w∈ω ω = ω ωW  [5], but 
this similarity measure will not possess the 
properties of a kernel function. In this work, 
instead of the maximization operation, we use 
the linear combination of the conditional simi-
larities between two sequences over all the 
alignments:  
       

' ''

( ', '') ( ) ( ', ''| )
N Nw

K p w K w
∈

ω ω = ω ω∑
W

.  (2) 

 
Let w  be an alignment of sequences 'ω  and 

''ω  having the lengths 'N  and ''N . The begin-
ning part of the alignment w  up to the first 
tangency to the right or bottom boundary of 
the region ' ''N NW  (Figure 1) will be called its 
proper part and denoted by symbol ( )w w� .  
 
We shall call the sequences 'ω  and ''ω  of 
lengths 'N  and ''N  prolonged by alignment 
elements 0 Aα ∈  at the right up to some com-
mon length N  the augmented sequences 'ω =  

0
' '( ' , ' 1,..., ', ' , ' ')k kk N k Nα = α = α >  and '''' ( '' ,kω = α  

0
'''' 1,..., '', '' , '' '')kk N k N= α = α > . All the align-

ments of the augmented sequences form the set 
NNW . Two alignments ' ''N Nw∈W  and NNw∈W  

will be called equivalent and denoted as 
w w∼  if the proper part of alignment w  is the 
beginning part of alignment w .  

 
A system of weights ( )p w  will be said to be 
self-consistent if, first, the weights of symmet-
ric alignments equal to each other 

( ) ( )Tp w p w=  and, second, any 'N , ''N  and 
N  such that 'N N≥  and ''N N≥  satisfy the 
condition ,( ) ( )

NNw w wp w p w∈= ∑ ∼W , i.e. the 

weight of any alignment of the original se-
quences w  is equal to the sum of the weights 
of equivalent alignments of the augmented se-
quences.  
 
Theorem 1. For the linear combination 

( ', '')K ω ω  (2) of conditional similarity meas-
ures ( ', '' | )K wω ω  (Ошибка! Источник 
ссылки не найден.) to be a kernel function on 
the set of sequences over the linear space of 
primitives { ( , 1,..., ),k k NωΩ= ω= α =  it is suffi-
cient that the aligning element satisfies the con-
dition 0 0( , ) 1μ α α =  and the system of weights 

( )p w  is self-consistent.  
 
At the same time, for some two-argument 
function ( ', '')K ω ω  (2), which formally pos-
sesses the properties of kernel, would be also 
useful from the practical point of view, it is im-
portant to properly choose the original kernel 

( ', '')μ α α  on the set of primitives Aα ∈ , the 
aligning element 0 Aα ∈ , and the system of 
alignment weights ( )p w .  

Radial kernel on the set of primitives and 
multiplicative alignment weights  

Let in the linear space of primitives with the 
null element Aφ∈  a Euclidean metric be de-
fined, for instance, by some initial kernel 



[( ', '') ( ', ') ( '', '')ρ α α = κ α α + κ α α − ]2 ( ', '')κ α α . It 
is known [1] that, in this case, the two-
argument function  
            2( ', '') exp ( ', '')⎡ ⎤μ α α = −βρ α α⎣ ⎦   (3) 
with any value of the parameter 0β >  is a ker-
nel which embeds the linear space with inner 
product ( ', '')κ α α  into another linear space 
with inner product ( ', '')μ α α .  
 
The kernel function (3), which, by its struc-
ture, quantitatively expresses a pair-wise simi-
larity between primitives with respect to the 
original metric ( ', '')ρ α α , is usually called the 
radial kernel.  
 
The choice of the null element of the original 
linear space as the aligning element 0 Aα = φ∈  
meets the condition 0 0( , ) 1μ α α =  in Theorem 1.  
 
We associate the non-negative numbers 

( )q h q=  and ( ') ( '') 'q h q h q= =  with each of 
three values of the variable h , 'h  and ''h . The 
value 1 3q >  means the preference of the ab-
sence of insertions and deletions at each ele-
mentary step of comparing the sequences 
(Figure 1).  
 
Let ,( , 1,...,| |)w jw h j w= =  be an arbitrary 
alignment, and ( )w w�  be its proper part. The 
weight of the alignment will be defined as the 
product  

                   ,
1

| ( )|
( ) ( )w j

j

w w
p w q h

=

= ∏
�

.  (4) 

Theorem 2. The system of weights (4) is self-
consistent.  
 
So, the radial kernel on the set of primitives 
and the multiplicative system of weights meet 
all the requirements of Theorem 1 and define a 
kernel on the set of sequences of different 
length (2), which explicitly expresses the de-
gree of their pair-wise similarity. The algo-
rithm of computing the value of this kernel has 
the computational complexity proportional to 
the product of the lengths of the sequences be-
ing compared.  
 

Refernences  

 
1. Aizerman M.A., Braverman E.M., Rozonoer L. I. 

Method of Potential Functions in the Theory of. Ma-
chine Learning (in Russian). Nauka, Moscow, 1971.  

2. Vapnik V. Statistical Learning Theory. New York: 
John-Wiley & Sons, Inc., 1998, 732 p.  

3. Dayhoff M.O., Schwartz R.M., Orcutt B.C. A model 
for evolutionary change in proteins. Atlas for Pro-
tein Sequence and Structure (M.O. Dayhoff, ed.), 
1978, Vol. 5, pp. 345-352.  

4. Haussler D. Convolution kernels on discrete struc-
tures. Technical Report UCSC-CLR-99-10, Univer-
sity of California at Santa Cruz, 1999.  

5. Dubin R., Eddy S., Krogh A., Mitchison G. Biologi-
cal Sequence Analysis. Probabilistic Models of Pro-
teins and Nucleic Acids. Cambridge University 
Press, 1998, 356 p.  


