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Abstract. There are two desirable properties that a pair-wise similarity measure 
between amino acid sequences should possess in order to produce good per-
formance in protein homology analysis. First, it is the presence of kernel prop-
erties that allow using popular and well-performing computational tools de-
signed for linear spaces, like SVM and k-means. Second, it is very important to 
take into account common evolutionary descent of homologous proteins. How-
ever, none of the existing similarity measures possesses both of these properties 
at once. In this paper, we propose a simple probabilistic evolution model of 
amino acid sequences that is built as a straightforward generalization of the 
PAM evolution model of single amino acids. This model produces a class of 
kernel functions each of which is computed as the likelihood of the hypothesis 
that both sequences are results of two independent evolutionary transformations 
of a hidden common ancestor under some specific assumptions on the evolution 
mechanism. The proposed class of kernels is rather wide and contains as par-
ticular subclasses not only the family of J.-P Vert’s local alignment kernels, 
whose algebraic structure was introduced without any evolutionary motivation, 
but also some other families of local and global kernels. We demonstrate, via k-
means clustering of a set of amino acid sequences from the VIDA database, that 
the global kernel can be useful in bringing together otherwise very different 
protein families.  

Keywords: Protein homology analysis, evolution modeling, amino acid se-
quence alignment, evolutionary kernel function, kernel-derived clusters.  

1   Introduction  

Protein homology is understood as sequence similarity based on recent common an-
cestry and similar function. The concept of homology is one of the most important in 
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proteomics. However, its operational meaning remains rather obscure and not well 
represented by computationally sound concepts and tools, and practical definition of 
protein homologous families remains subject to significant manual curation.  

In the absence of structural folding data for the overwhelming majority of proteins, 
the development of protein homologous families mostly relies on protein amino acid 
sequence data, under the assumption that homologous proteins should have similar 
protein sequences. To fully automate the process, a reliable and computationally fea-
sible solution to two principal issues is needed: (a) measuring similarity between pro-
tein sequences and (b) clustering proteins into similarity groups.  

The most popular approach to assessing the pair-wise similarity of amino acid se-
quences, which was developed as a means of detecting evolutionary relationships 
between them, is the approach based on the notions of global or local alignment.  The 
original idea was to determine a similarity measure through finding the best corre-
spondence between successive amino acids in two sequences with possible gaps, 
which is computed via a version of the dynamic programming procedure, respec-
tively, the global Needleman-Wunsch [1] or the local Smith-Waterman algorithm [2]. 
In the latter case, fast heuristics BLAST, PSI-BLAST [3 and FASTA [4] are usually 
applied instead of dynamic programming to accelerate calculations.  

However, these approaches do not perform well for remotely homologous proteins 
[5,6 ,7]. We suppose that this insufficiency arises due to the absence of two very im-
portant properties:  

(a) classical optimal-alignment-based similarity measures are not based on a bio-
logically-defined evolution mechanism, and  

(a) they are not kernel functions, i.e., do not enable usage of such powerful and 
convenient tools as SVM and k -means clustering developed for linear spaces.  

Multiple investigations have explored the idea of endowing the similarity measures 
with these desirable properties. In particular, a number of kernel functions in the set 
of amino acid and DNA sequences were introduced in [8, 9, 10, 11, 12, 13]. However, 
practically all of them remain motivated by purely algebraic considerations, even J.-P. 
Vert’s LA-kernels [8] which average the similarity measures produced by all feasible 
local alignments. The families of kernels studied in [14, 15], in spite of their probabil-
istic nature, are also not based on an explicitly formulated model of evolution.  

A separate line of investigations has been aimed at forming models of protein evolu-
tion. In [16, 17, 18, 19], a number of different models were proposed, but the similarity 
measures resulting from them, which are based on the notion of statistical alignment and 
take into account most likely ways of evolution [16] or all possible ways [17,18,19], do 
not possess, nevertheless, all the kernel properties. Besides, the methods of this kind have 
very high computational complexity [18] or do not guarantee the mathematical correctness 
of the similarity measure as the probability of two independent transformations of the pro-
tein pair under comparison from the same unknown ancestor [17].  

In this paper, we propose a simple probabilistic model of evolution of amino acid 
sequences that is built as a rather straightforward generalization of Margaret Day-
hoff’s Point Accepted Mutation (PAM) model developed for single amino acids [20]. 
The respective pair-wise sequence similarity measure has the strong mathematical 
meaning of the likelihood of the hypothesis that the two sequences are the results of 
two independent evolutionary transformations of some hidden sequence considered as 
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their common ancestor. Each similarity measure of the proposed class possesses all 
the properties of a kernel function, in particular, the matrix of its values computed for 
any finite set of amino acid sequences is, at least, positive semidefinite. By its alge-
braic structure, this class of kernels is an essential generalization of that of local 
alignment kernels [8] and embraces not only the local but also the global principle of 
sequence comparison. A kernel function defined on a set of entities of arbitrary kind 
embeds it into a hypothetical linear space, with the role of the inner product played by 
the kernel itself. Thus, any linear methods are applicable to the set of amino acid se-
quences since we have managed to measure some pair-wise relation between them by 
a kernel function.  

The proposed class of evolutionary kernels is verified via clustering a given set of 
amino acid sequences that contains several known groups of homologous proteins 
from the VIDA database. For this purpose, we correspondingly modified the k -means 
method of clustering, as one of the most popular linear method, for the kernel-based 
protein representation. It turned out that the subclass of global kernels demonstrated 
almost complete coincidence of the clustering result with the true homologous groups 
in the protein set under processing, in contrast to local alignment kernels and similarity 
measures based on finding the optimal alignment, which could not bring together dif-
ferent protein families.  

2   Evolution-Based Principle of Comparing Amino Acid Sequences  

2.1   Similarity of Amino Acids  

Measuring similarity of amino-acid sequences must inevitably be based on measuring 
similarity of amino acids forming them. The most commonly adopted similarity 
measure involves the family of PAM substitution matrices derived by Margaret Day-
hoff [20] from a probabilistic model of evolution. Another popular family of substitu-
tion matrices was introduced by Steven and Jorjia Henikoff and called BLOSUM 
(BLOcks SUbstitution Matrices) [21]. These matrices directly calculate frequencies of 
appearance of different amino acids at the same positions in an extracted block of 
similar fragments of sequences, requiring no knowledge of phylogeny but only the 
results of the alignment. However, it is shown in [22] that the family of BLOSUM 
substitution matrices can be explained in terms of Dayhoff’s evolutionary model as 
was done for PAM.  

The main mathematical notion of Dayhoff’s PAM evolution model at a single point 
of protein sequence is that of a Markov chain over the alphabet of 20 amino acids 

1 20{ ,..., }A = α α . The model is defined by a matrix of conditional probabilities 

( )( | ), , 1,..., 20j i i j= ψ α α =Ψ  that amino acid iα  will be substituted by amino acid 
jα  at the next step of evolution (mutation probability matrix). It is assumed that the 

Markov chain of evolution is ergodic and reversible, i.e., there exists the final prob-
ability distribution ( )jξ α   

 ( ) ( | ) ( )i j i j

i Aα ∈
ξ α ψ α α = ξ α∑ ,  (1) 

and the equality  
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 ( ) ( | ) ( ) ( | )i j i j i jξ α ψ α α = ξ α ψ α α   (2) 

holds true for all amino acids.  
When estimating the matrix Ψ  by aligning a set of very similar sequences, it was 

conventionally accepted that 
20

1
1 ( ) ( | ) 0.01i i i

i=
− ξ α ψ α α =∑ , i.e., 1% of amino acids 

would change at a single step of evolution. This mutation probability matrix is called 
PAM 1 and associated with the evolutionary distance 1. Margaret Dayhoff considered 
also the s -foldly thinned-out Markov chain, i.e., derived from the original one by 
taking away 1s −  of every s  elements, which will be defined by the matrix 

( )] ] ( | ), , 1, ..., 20 ...j i
s s

s
i j[ [= ψ α α = = × ×��	�
Ψ Ψ Ψ  corresponding to the evolutionary 

distance s  and having the same final probability distribution ( )jξ α . The most popu-

lar mutation probability matrix is PAM 250 with 250s = .  
It is easy to prove [22] that for any s  the similarity measure  

 [ ] [ ] [ ]( , ) ( | ) ( ) ( | ) ( )i j j i i i j j
s s sμ α α = ψ α α ξ α = ψ α α ξ α ,  (3) 

as well as its normalized version  

[ ] [ ] [ ] [ ]( , ) ( , ) / ( ) ( ) ( | ) / ( ) ( | ) / ( )i j i j i j j i j i j i
s s s sμ α α = μ α α ξ α ξ α = ψ α α ξ α = ψ α α ξ α�   (4) 

are kernel functions, i.e. form positive definite matrices in the set of amino acids.  
The PAM scoring matrices are traditionally represented in the log-odds form 

as [ ] 10 [ ]( , ) 10 log ( , )i j i j
s sπ α α = μ α α� . This logarithmic representation is convenient 

from the viewpoint of scaling similarity values but deprives [ ] ( , )i j
sμ α α�  of the origi-

nal kernel-function properties.  

2.2   The Main Idea of Comparing Two Amino Acid Sequences  

Let Ω  be the set of all finite amino acid sequences ( , 1,..., )t t N= ω =ω , t Aω ∈ . We 
shall use also the notation { ( ,n tΩ = = ωω  }1,..., ), ,tt N A N n= ω ∈ =  for the set of 

all sequences having the fixed length n , and { ( , 1,..., ),tn t N≥Ω = = ω =ω  

},t A N nω ∈ ≥  for the set of sequences that are not shorter than n .  Let us, further, 
consider a random sequence ( , 1,..., )i A i nϑ ∈ =ϑ = n∈ Ω ⊆ Ω  of random length n , 
such that the pair ( , )n ϑ  is jointly defined by a pair of probability distributions 

( )( ), 0,1, 2,...r n n =  and ( )( ),n np ∈ Ωϑ ϑ .  
It appears natural to evaluate the similarity of two amino acid sequences 
, n≥′ ′′∈ Ωω ω  by computing the probability of the hypothesis that they originate from 

the same random ancestor n∈ Ωϑ  as results of two independent branches of evolu-

tion defined by a known random transformation ( )( | ), ,n n n≥ϕ ∈ Ω ∈Ωω ϑ ω ϑ :  

 
0

( , ) ( ) ( ) ( | ) ( | )
n

n n nn
r n p

∞

= ∈Ω
′ ′′ ′ ′′= ϕ ϕ∑ ∑K

ϑ
ω ω ϑ ω ϑ ω ϑ .  (5) 
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Theorem 1. Any choice of distribution ( )( ), 0,1, 2,...r n n =  and families of condi-

tional distributions ( )( | ), ,n n n≥ϕ ∈ Ω ∈ Ωω ϑ ω ϑ  and ( )( ),n np ∈Ωϑ ϑ  leads to the 

fact that (5) is a kernel function in the set of all amino acid sequences.  

The proof of Theorem 1 is based on checking whether Mercer’s conditions [23] are 
met.  

2.3   The Model of Random Evolutionary Transformation of an Amino Acid 
Sequences into Another One  

We consider here only two-step random transformations ( | )nϕ ω ϑ  of the ancestor 

sequence n∈ Ωϑ  into a resulting sequence n≥∈ Ωω .  

Step 1. Random choice of an n -length structure 1( ,..., )nv v=v  of transformation 
→ϑ ω  with distribution ( )q v  defined in the set of all n -length structures 

1( ,..., )n nv v V= ∈v , ( ) 1
n

nV
q∈ =∑ v

v , where increasing sequence of natural numbers 

1 21 ... nv v v≤ < < < , indicates the positions of the resulting sequence into which the 
respective elements of the ancestor 1( ,..., )n= ϑ ϑϑ  will be transformed. So, for any 
given sequence 1( ,..., )Nω ωω =  of length N n≥ , a specific structure 1( ,..., )nv v=v  

explicitly defines, first, a subsequence ( , 1,..., )
iv i n= ω =vω  of elements, which we 

shall name the key subsequence, and, second, the additional subsequence =vω ( ,tω  

, 1,..., )it v i n≠ = , such that = v v∪ω ω ω .  

 
 
 
 

′ω

′′ω  

ϑ 5n =

′v  

′′v  

d   e   l   e   t   i   o  n  s 

′′ω

′ω

i   n   s   e   r   t   i  o  n  s 

s  u  b  s  t  i  t  u  t  i  o  n  s w

nv′  

1v′′  nv′′  

1v′  

– additional  
subsequence (ω) 

– key 
subsequence (ω) 

 

Fig. 1. The structure of random transformation of symbolic sequences 

Step 2. For each structure nV∈v , a structure-dependent random transformation is 

assumed to be defined ( | , ) 0nη ≥vω ϑ  such that ( | , ) 0nη =vω ϑ  if 
nv≥∉Ωω , i.e. 

( | , ) 1n
vn≥∈Ω η =∑ vω ω ϑ . As a result, distribution ( | )nϕ ω ϑ  is the mixture  

 ( | ) ( ) ( | , )
n

n n nV
q∈ϕ = η∑ v

v vω ϑ ω ϑ .  (6) 

In this work, we make some additional assumptions on the distributions forming 
the class of kernel functions (5).  

 
Conditional independence of the key-subsequence elements. The symbols of the 
key subsequence are randomly generated from those of the original sequence in  
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accordance with Dayhoff’s mutation probabilities [ ] ( | )j i
sψ α α  in the set of amino 

acids with a conventional evolution step s  (Section 2.1)  

 [ ]1
( | , ) ( | )

i

n

n s v ii=
η = ψ ω ϑ∏v vω ϑ .  (7) 

Independence of the ancestor-sequence elements. The original sequence is formed 
by independent symbols chosen in accordance with Dayhoff’s final probabilities 

( )iξ α  in the set of amino acids  

 1 1
( ) ( ,..., ) ( )

n

n n n ii
p p

=
= ϑ ϑ = ξ ϑ∏ϑ .  (8) 

Completely random runaway of the resulting sequence. The runaway τ  of the 
length nN v= + τω  over nv  in the transformation structure 1( ,..., )nv v=v  is deter-

mined through the “completely random” length of the final part of the additional sub-
sequence ( ,..., )

n Nvω ω
ω

. So, the distribution of τ  is considered as an improper “al-

most uniform” distribution  

 ( ) 0z τ → ∼∼∼ , 
0

( ) 1z
∞

τ=
τ =∑ .  (9) 

Independence of the additional subsequence from the key one. It is assumed that  

 ( | , ) ( | , ) ( )n nη = η ηv vv vω ϑ ω ϑ ω .  (10) 

The notation ( )η vω  instead of ( | , )η v vω ϑ  means that, first, there is no dependence 
on the original sequence ϑ  and, second, if the symbolic compositions of different 
subsequences coincide ′ ′′=v vω ω  then ( ) ( )′ ′′η = ηv vω ω .  

2.4   The General Kernel Structure  

After these assumptions, it remains only to choose the family of distribution ( )nq v  over 

the set of n -length structures 1( ,..., )n nv v V= ∈v  and the family ( )η vω  that determines 

the additional subsequence. Below, in Section 3, we shall see that these two choices not 
only accomplish the definition of the class of kernels but also essentially affect its prop-
erties.  However, the already made assumptions allow for representing the class of 
kernels (5) in a more structurally explicit form.  

Any pair of n -length structures 1( ,..., )n nv v V′ ′ ′= ∈v  and 1( ,..., )n nv v V′′ ′′ ′′= ∈v  of 
transformations ′→ωϑ  and ′′→ωϑ , n∈ Ωϑ , , n≥′ ′′ ∈ Ωω ω  defines a pair-wise 
alignment of the two sequences (Figure 1):  

 1, ,

1, ,

( , ) , ..., n

n

v v
v v

′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′′= = ⎢ ⎥⎜ ⎟ ⎜ ⎟′′ ′′⎝ ⎠ ⎝ ⎠⎣ ⎦
w w

w w
w w

w v v .   

We shall call it the pair-wise alignment of order n ( n -order alignment) because ex-
actly n  pairs of amino acids will be immediately compared. The set of all n -order 
pair-wise alignments is n n nW V V= × , and distribution ( )nq v  in nV  defines distribu-

tion ( ) ( ) ( )n n nq q q′ ′′= w ww v v . Vice-versa, any n -order pair-wise alignment w  defines 
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a pair of n -length transformation structures ( , )′ ′′w wv v .  It should be noticed that not 

all pair-wise alignments can define the pair of sequences ′ω  and ′′ω  of lengths N ′  
and N ′′ , but only those of them which satisfy the conditions ( )nv N′ ′≤w  and 

( )nv N′′ ′′≤w . The set of all such pair-wise alignments of sequences ′ω  and ′′ω  will be 

denoted as nnN NW W′ ′′∈ ⊂w .  

For each pair-wise alignment nN NW ′ ′′∈w , we define a real-valued symmetric func-

tion over all pairs of sequences N ′≥′ ∈ Ωω  and N ′′≥′′∈ Ωω   

 ( ), ,[2 ]1
( , | ) ( , ) ,

i i

n

n n si v vK K
=′ ′′ ′ ′′′ ′′ ′ ′′ ′ ′′= = μ ω ω∏w w w wv vω ω w ω ω ,  (11) 

where 
, ,[2 ] ( , )

i is v v′ ′′′ ′′μ ω ω
w w

 is the kernel on the set of amino acids (3) for the double evo-

lution step 2s  with respect to the step s  taken in the one-side model (7). Since any 

product of kernels remains to be a kernel, the function ( , | )nK ′ ′′ω ω w  is also a kernel. 

We shall call it alignment-dependent key kernel of order n .  
Further, we define the alignment-dependent additional kernel as  

 ( , | ) ( , ) ( ) ( )n nK K ′′′ ′ ′′′ ′′ ′ ′′ ′ ′′= = η η
ww vv v vω ω w ω ω ω ω .  (12) 

Theorem 2. Under assumptions (7)-(10) and notations (11) and (12), the kernel (5) is 
representable as  

     
0

( , ) ( ) ( ) ( , | ) ( , | )
nn nN NW

K r n q K K
= ′ ′′

∞
∈

′ ′′ ′ ′′ ′ ′′=∑ ∑w
ω ω w ω ω w ω ω w .  (13) 

Proof. Elementary substitution of assumptions (7)-(10) in (5) yields (13) for the  
function  

 
, ,[ ] [ ]1

( , | ) ( ) ( ) ( | ) ( | )
i i

n

n n i s i s iin v vK p
=∈Ω ′ ′′′ ′′ ′ ′′= ξ ϑ ψ ω ϑ ψ ω ϑ∑ ∏ w w

ω ω w ϑ ϑ .   

Its equivalence to (11) immediately follows from Dayhoff’s main assumption on the 
ergodicity (1) and reversibility (2) of the PAM Markov chain.  

Thus, we have come to the class of kernels on the set of amino acid sequences  

     ( )
, ,[2 ]0 1

( , ) ( ) ( ) ( , | ) ,
i i

n

n sn inN NW v v
K r n q K

= =′ ′′

∞
′ ′′∈

′ ′′ ′ ′′ ′ ′′= μ ω ω∑ ∑ ∏
w ww

ω ω w ω ω w ,  (14) 

where the distributions ( )( ), 0,1, 2,...r n n = , ( )( ),
n n

q W∈w w  and ( )η vω  over all 

symbolic sequences of any length ∈ Ωvω  are not defined as yet.  
 

To work up some policy of choosing these remaining elements of the kernel construc-
tion, it is required to clarify their influence on the result of sequence comparison. The 
distribution ( )( ), 0,1, 2,...r n n =  is meant to express some assumption on the length of 

the hidden ancestor, i.e., the number of pairs of amino acid positions in ′ω  and ′′ω , 
which will be taken into account when comparing these sequences. The similarity of 
the given sequences from the viewpoint of the presence of some “almost common” 
subsequence of length n  in them is measured just by the key kernel (11), whereas the 

choice of the additional kernel (12) defined by ( )η vω  gives the possibility to dilute 



 A Class of Evolution-Based Kernels for Protein Homology Analysis 291 

this assessment, if desirable, through involving other unpaired elements into compari-

son. The role of distribution ( )( ),
n

q W∈w w  is, actually, regulation of whether, how 

and to what extent the gaps between paired positions will affect the comparison.  

3   Some Particular Kinds of Kernels  

3.1   Kernels of Fixed and Unfixed Order  

In particular, if there is no reason to constrain the tentative length of the hypothetical 
“almost common” subsequence, the distribution ( )( ), 0,1, 2,...r n n =  should be taken 

as an improper “almost uniform” distribution ( ) 0r n const→ ≅ , 
0

( ) 1
n

r n
∞

=
=∑ . In 

this extreme case, the respective item will fall out of (14) completely, and we obtain 
key-length indifferent kernels, which we call kernels of absolutely unfixed order:  

     ( )
, ,[2 ]0 1

( , ) ( ) ( , | ) ,
i i

n

n sn inN N
W v v

K q K
= =′ ′′

∞
′ ′′∈

′ ′′ ′ ′′ ′ ′′= μ ω ω∑ ∑ ∏
w ww

ω ω w ω ω w .  (15) 

On the extreme contrary, if it desirable to strictly preset the length of the key sub-
sequence, this distribution should turn into an absolutely concentrated one ( ) 1r n =  

and ( ) 0r k =  with any k n≠ . The kernels of this kind are called here kernels of a 
fixed order:  

      ( )
, ,[2 ]1

( , ) ( ) ( , | ) ,
i i

n

n n sinN N
W v v

K q K
=′ ′′ ′ ′′∈

′ ′′ ′ ′′ ′ ′′= μ ω ω∑ ∏
w ww

ω ω w ω ω w .  (16) 

3.2   Local and Global Kernels  

As a rule, the desirability of that of other kinds of alignments is expressed by the 
mathematical assumption that the likelihood ( ) ( ) ( )n n nq q q′ ′′=w v v  depends only on 

the lengths of the gaps at the left 1( 1)v − , in the middle ( )2 1 1( ),..., ( )n nv v v v −− −  and at 

the right ( )nN vω−  of each of the two sequences. It is the usual practice to assume that 

the random lengths of the gaps are a priori independent, and each of them has a prob-
ability distribution monotonically diminishing as the length grows:  

( )
1, 1,

( | , )
exp , 1,

i

i i
i i

d
g d a b

a bd d

=⎧⎪∝ ⎨ −β + >⎡ ⎤⎪ ⎣ ⎦⎩
 0 1d v= , 1i i id v v −= − , or 1n nd N v+ ω= − .  (17) 

If 0a = , the “cost” of two gaps id  and jd  is the same as that of one gap of the 

summed up length i jd d+ . Otherwise, if 0a > , one long gap is considered as more 

preferable than two short gaps making the same length. However, the distributions 
may be taken, if required, as position-dependent, i.e., different for different i .  

The kernel function is said to be local if only middle parts of the two sequences par-

ticipate in comparison. In this case, we define ( )( ),
n

q V∈v v , for instance, by putting 

the improper joint distribution as the product of the identical single distributions  
(17) within the range of the key part and “absolutely random” ones beyond it 
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12
( ) ( | , )

n

n i ii
q g v v a b−=

∝ −∏v , and the distribution of the additional subsequences is 

taken as completely improper one ( ) 1v constη = =ω , which defines neither the 

lengths nor the compositions of the additional subsequences.  
From the inverse point of view, the additional parts of the two sequences should be 

compared with the same attention as the key ones when judging of sequence similar-
ity. In this case, the a priori models of both gaps and additional symbols should be 
extended onto the entire lengths of the sequences, for instance, as  

      
( ) ( )1 12

1

( ) ( | , ) ( | , ) ,

( ) ( ).
n

i

n

n i i ni

tt v
t v

q g v a b g v v a b g N v− ω=

≤ <
≠

⎧ = − −
⎪
⎨η = ξ ω⎪
⎩

∏
∏v

v

ω
  (18) 

The a priori distributions (18) define the family of global kernels.  

4   Kernel Computation: A Slight Modification of the Algorithm for 
Local Alignment Kernels  

It should be noticed that the properties of the proposed model of evolution allow to 
express the initial kernel (19) in absolutely equivalent but essentially more simple 
form (14), which does not contain the sum over all possible hidden ancestor se-
quences (see Theorem 1). This circumstance provides the possibility for sufficiently 
simple and quick computation of this kernel with complexity (| || |)O ′ ′′ω ω .  

Despite the fact that the local alignment kernels proposed by J.-P. Vert and his col-
leagues in [8] for classification of biological sequences are not motivated by any ex-
plicitly formulated evolution model, they fall, by their algebraic structure, into the 
class considered here. More exactly, the local alignment kernels belong to the family 
of local kernels of absolutely unfixed order. So, the dynamic-programming algo-
rithm described in [8] computes a kernel of this kind. The other particular cases of the 
proposed class of evolution-based kernels, namely, global kernels of absolutely un-
fixed order and local and global kernels of fixed order, require a slight modifica-
tion of the algorithm [8]. In particular, the global kernel of absolutely unfixed order 
can be computed using (17) by recurrent expressions:  

2
, 1, 1 1, 1 1, 1 1, 1

( 1| , ) ( 1| , )( , )( e e ),b b b
i j s i j i j i j i j i j

g i a b g j a bM M X Y e Z e− − −
− − − − − − − −

− − − −′ ′′= μ ω ω + + + +   
2

, 1, 1, , , 1 , 1 , 1, 1 , 1 1, 1, 1e ; e e , ( ) ,a b a b a a
i j i j i j i j i j i j i j i j i j i j i jX M X Y M Y Z M X Y Ze e e e− − − − − − −

− − − − − − − − − −= + = + = + + +    

starting with ,0 0, ,0 0, ,0 0, ,0 0,0, 0, 0, 0i j i j i j i jM M X X Y Y Z Z= = = = = = = = . The resulted value of 

the global kernel of absolutely unfixed order is given by the formula  

 | |,| | | |,| | | |,| | | |,| |( , ) ( )b bK M e X Y e Z− −
′ ′′ ′ ′′ ′ ′′ ′ ′′′ ′′ = + + +ω ω ω ω ω ω ω ωω ω .   

5   Kernel-Based Clustering of Proteins  

The task of clustering is to partition the given set of amino acid sequences 
* { , 1,..., }j j MΩ = =ω  into k  disjoint subsets * * * *

1 2 ... kΩ = Ω Ω Ω∪ ∪ ∪ , * *
i lΩ Ω = ∅∩ , 
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, 1,..., ,i l k= i l≠ , each of which consists of similar sequences with respect to the ac-

cepted similarity measure. We use the well known k -means method [24, 25], adopted 
by us for the case when the similarity is measured by a kernel function.  

Any kernel ( , )K ′ ′′ω ω  defined in the given set of amino acid sequences *Ω  em-

beds it into a hypothetical linear space * *Ω ⊃ Ω�  with Euclidean metric  

     2 ( , ) ( , ) ( , ) 2 ( , )K K K′ ′′ ′ ′ ′′ ′′ ′ ′′ρ = + −ω ω ω ω ω ω ω ω , , ∗′ ′′∈ Ω�ω ω .  (20) 

The k -means iteration procedure consists in implementation of the following two 
steps at each ( 1s + )th iteration:  

1) finding k  fixed abstract class centers 1 1 *,...,s s
k k

+ + ∈ Ω�ϑ ϑ on the basis of the 

known partition *( ){ , 1,..., }s
i i kΩ =  at the previous iteration by the rule 

*( )
1 2arg min ( , )s

i

s
i l

l
∗

+
∈Ω ∈Ω= ρ∑�ϑ ωϑ ω ϑ , which, with respect to (20) and the properties of 

the Frechet differential in the linear space ∗Ω� , leads to the explicit expression:  

         ( )1 ( )
( )1 | |s s

i i ls
il

+ ∗
∗Ω∈= Ω ∑ωϑ ω .  (21) 

2) finding the new partition defined by these centers:  

         { }*( 1) 2 1 2 1

1,...,
: ( , ) min ( , ) , 1,...,s s s

i j j i j ll k
i k+ ∗ + +

=
Ω = ∈Ω ρ = ρ =ω ω ωϑ ϑ . (22) 

In accordance with (20) and on the force of the linearity property of the inner product 

( , )K ′ ′′ω ω  in the linear space ∗Ω� , we have:  

2 1
( ) 2 ( )( ) ( ) ( )
1 1

( , ) ( , ) ( ) 2 ( )
| | | |

s
j l j j j l j ls s

i i

s s s
i i ij jl

K K K+
∗ ∗∗ ∗ ∗Ω Ω Ω∈ ∈ ∈ρ = + −

Ω Ω∑ ∑ ∑ω ω ω ω ω ωϑ ω ,ω ω ,ω   

Substitution of the obtained formula into (22) allows to avoid explicit computation of 
the abstract centers and, so, to avoid step 1.  

To start the k -means algorithm, we apply the procedure of finding “anomalous 
patterns” proposed in [25], which automatically identifies the number and composi-
tions of the initial clusters.  

6   Protein Homology Analysis. Data, Experiments and Results  

One of the particular subclasses of the class of evolution-model-based kernels  
proposed in this paper is that of so-called local kernels of absolutely unfixed order 
(Section 3) which coincides with the family of local alignment kernels by J.-P. Vert 
and his colleagues [8]. It is shown in [8] that the kernels of this kind essentially out-
perform the protein similarity measures based on finding the optimal alignment and 
other non-evolutionary kernels in detecting remote homology of proteins.  The aim of 
the experiment presented in this Section is to demonstrate that there exists, at least, 
one subclass in our class of kernels, namely that of global kernels of absolutely un-
fixed order (Section 3), that can be useful in bringing together proteins from indubita-
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bly the same homologous group which appear, nevertheless, as very different from 
the viewpoints of other similarity measures.  

The data set consists of 233 membrane glycoproteins comprising 8 herpesvirus 
Homology Protein Families (HPF) divided in the VIDA database in three subsets ac-
cording to their function. The structure of the data set and the results of its clustering 
are shown in Figure 2.  

In the experiments, we tested four different similarity measures:  
(a) PSI-BLAST tool [3], (b) Needleman-Wunsch algorithm [1], (c) local alignment 

kernel of absolutely unfixed order [8], and (d) global kernel of absolutely unfixed 
order. Traditional measures (a) and (b) are based on the optimal local and global 
alignment respectively. The kernels (c) and (d) considered in this paper are based on 
multiple alignments. For methods (a)-(c), we used the values of parameters recom-
mended by authors.  

Desired 
classification

 

52   39 18  30 31 18 48  

class 1 (109 proteins)
glycoprotein H 

(HPF 12, 42, 531) 

class 2 (76 prot.)
glycoprotein L 

(HPF 47,50,114,296)

class 3 (48 proteins) 
glycoprotein M 

(HPF 20) 

 

PSI-BLAST
 cluster 6 cluster 1 cluster 2 cl. 5cl. 3 cl. 4 

4852 18 39 1830  31
 

Needleman-
Wunsch 

 cluster 1 cluster 2 cluster 3 cluster 4 
50 15 39 30 31 18 48 

 

Local  
kernel 

 cluster 4 cluster 5 cluster 1 cluster 2 cluster 3 
23 25 52 18 39 30 1831  

Global  
kernel 

 cluster 1 cluster 2 cluster 3 
52 1739 30 48 30 18

 

Fig. 2. Results of clustering the set of 233 membrane glycoproteins 

For each of these similarity measures, we solved the problem of clustering the 233 
proteins into an unfixed number of clusters. In all the cases, the number of initial 
classes k  was identified on the basis of the procedure of finding “anomalous pat-
terns” [25]. For cases (a) and (b), we used the standard dissimilarity-based k -centers 
algorithm of clustering in which some real object plays the role of the approximate 
center of each class, whereas for cases (c) and (d) the kernel-based k -means proce-
dure was applied in which the center of the respective class is represented by the 
arithmetic mean of objects forming it (21) in accordance with the linear operations 
induced by the kernel in ∗Ω� .  

The results of clustering presented in Figure 2 show that only the global kernel of 
completely unspecified order yields the clustering which practically coincides with 
the actual structure of the three homology groups of proteins. In fact, the global kernel 
correctly identifies the similarity between otherwise dissimilar homologous protein 
families that bear the same function in the organisms under consideration.    
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This is the obvious example of superiority of the global kernel. However, it should 
be noticed that this superiority is not absolute. For a number of classes, the other par-
ticular cases of the proposed evolutionary kernel demonstrate higher performance 
compared to the global kernel. In particular, we detected that the global kernel, as any 
global similarity measure, is very sensitive to the length of proteins and cannot detect 
the similarity of sequences of very different lengths. At the same time, it allows com-
paring whole sequences instead of their parts and, as a result, detecting similarity in 
some cases when local kernels fail.  

7   Conclusions  

In this paper, we have proposed a simple probabilistic model of amino acid sequence 
evolution, which is built as a straightforward generalization of the PAM evolution 
model developed by Margaret Dayhoff for single amino acids. The respective pair-wise 
sequence similarity measure possesses the properties of a kernel function computed as 
the likelihood of the hypothesis that both sequences are results of two independent evo-
lutionary transformations of some hidden common ancestor.  

Under some particular assumptions on the model of protein evolution, the proposed 
kernel has the same structure as the well-known local alignment kernel introduced by 
J.-P. Vert [8]. So, on one hand, we have found a probabilistic justification of Vert’s 
local alignment kernels, and, on the other, an essential generalization of them is pro-
posed, which embraces not only the local but also the global principle of sequence 
comparison and a number of other particular cases, which are specified by the choice 
of the parameters in the evolution model.  We also show that the proposed evolution-
based pair-wise similarity measure can be useful in the analysis of some difficult dis-
tant homology sets of proteins and help in computationally resolving situations in 
which other measures may fail.  

The particular subclass of fixed-order kernels, which are based on alignments with 
only a fixed number of substitutions, attract a special interest. This kind of kernels 
may be very useful when the a priori information is available on the length of the un-
known ancestor sequence.  
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