
Supervised Selective Combining Pattern
Recognition Modalities and its Application to
Signature Verification by Fusing On-Line and

Off-Line Kernels

Alexander Tatarchuk1, Valentina Sulimova2, David Windridge3, Vadim Mottl1

and Mikhail Lange1

1 Computing Center of the Russian Academy of Sciences,
Moscow, Russia

2 Tula State University, Tula, Russia
3 Centre for Vision, Speech and Signal Processing,

University of Surrey,Guildford, UK

Abstract. Any specific type of physical, biological, social or other phe-
nomenon which is considered as characteristic for some real-world ob-
jects and expressed by a formal variable is called the specific modality
of object representation in pattern recognition. We consider the prob-
lem of multi-modal pattern recognition under the assumption that the
kernel-based approach is applicable within each particular modality. The
Cartesian product of the linear spaces into which the respective kernels
embed the output scales of single sensor is employed as an appropriate
joint scale corresponding to the idea of combining modalities, actually,
at the sensor level, in contrast to the commonly adopted level of com-
bining classifiers inferred from each specific modality. In this paper, to
avoid overfitting, we set out a family of related stochastic methods for
encompassing modal-selectivity that are intrinsic to the chosen kernel-
based pattern-recognition approach. The principle of kernel selectivity
supervision is applied to the problem of signature verification by fusing
several on-line and off-line kernels into an entire training and verification
technique.

1 Introduction

Multimodal pattern recognition systems utilize several distinct feature modali-
ties, often with different scales, to represent specific phenomena [1, 2]. Feature
scales xi ∈ Xi may be quite complicated, so that frequently the only way of
treating real-world objects ω ∈ Ω is via pair-wise comparison of their features(
xi(ω′), xi(ω′′)

)
using modality-specific functions Ki(x′i, x

′′
i ) defined in the out-

put scales of the sensors Xi×Xi → R. A function K(x′, x′′) is a kernel if it forms
a semidefinite matrix for any finite collection of objects. Hence, a kernel embeds
the scale of the respective feature Xi into a hypothetical linear space in which
it plays the role of inner product. Depending on the set of kernel values and



the characteristics of the kernel, this embedding space can be of a significantly
different dimensionality that of the original measurement domain.

In consequence of its pairwise nature, kernel-based multi-modal pattern recog-
nition presents a number of difficulties over canonical pattern-recognition. In
particular, the problem of the composition and selection of feature modalities
becomes acute, since we cannot simply assume the Euclidean vectorisablity of
composite data without explicit construction of a kernel in the composite space.
This problem is further compounded by the potential presence of training data
that is not equally represented within each modality - as sometimes occurs in
census returns, or in independently-trained classification systems, for example,
in multimodal biometrics1.

However, when xi(ω) ∈ Xi = R, the kernel defined by the product Ki(x′i, x
′′
i ) =

x′ix
′′
i generates an appropriate and natural embedding of the multimodal data.

Support Vector Machines (SVMs), originally designed for two-class pattern recog-
nition learning in Rn, can thus be used to combine modalities by employing a
joint kernel K(x′,x′′) =

∑n
i=1 x′ix

′′
i . This analogy is exploited by multi-kernel

SVMs when more sophisticated kernel-represented modalities are to be combined
[3–5].

Despite the improved resilience of the SVM approach to over-fitting by virtue
of its adjustment of capacity to the requirements of hyperplane description, it
is often still necessary to combine modality-specific features on a selective basis.
Feature selection (FS) techniques are classed in the literature as filters and
wrappers [6].

Filters, as distinct from wrappers, are applied to the feature set independently
of classification technique. Selection can take the form of assigning continuous
weights to the features or, more commonly, binary inclusion/exclusion decisions.
Less often considered are composite mechanisms for classification/selection, such
that FS is implicit in the process of classification itself (although see [7]) because
of the danger of increased sample variance. However, if there exists a method of
assigning the desired level of selectivity a priori, ranging from the full waiver of
selection to the adoption of only single features, we potentially gain a tool for
optimizing generalization performance of training without attendant instability.

In this paper, we incorporate selectivity into the Relevance Kernel Machine
(RKM) [4, 5] representing an archetypal example of a continuous wrapper FS
method. The RKM is represented as making the same Bayesian decision on the
discriminant hyperplane inferred from the training set with differing a priori
orientation distributions. To achieve the desired selectivity, it hence suffices to
substitute the fixed distributions by a respective distribution family, so that a
meta-parameter controls the tendency to generate zero components of orienta-
tion and thus the rate of suppression of elements in the respective feature/kernel.
Increasing the selectivity parameter hence corresponds to decreasing the model

1 This missing data issue also occurs, albeit less acutely, in standard pattern recog-
nition: the reason for its particularly problematic nature in kernel-based pattern-
recognition is the inability to construct an embedding space when presented with an
incomplete kernel Gram matrix w.r.t all of the measured objects.



complexity. The appropriate selectivity level is to be determined by, for instance,
cross validation.

The Relevance Kernel Machine with supervised selectivity is applied here
to the problem of signature verification which consists in testing the hypothesis
that a given signature belongs to the person having claimed his/her identity. De-
pending on the initial data representation, it is adopted to distinguish between
on-line and off-line signature verification [8]. Any method of signature verifica-
tion is based, finally, on a metric or kernel in the set of signatures. The selective
kernel fusion technique considered in this paper serves as a natural way of eas-
ily combining on-line and off-line methods into an entire signature verification
procedure. Experiments with signature database SVC2004 have shown that the
multi-kernel approach essentially decreases the error rate in comparison with
verification based on single kernels.

2 A Bayesian strategy for determining the discriminant
hyperplane

Suppose the objects ω ∈ Ω are partitioned into two classes y(ω) ∈ Y = {−1, 1},
and measured by n features with modality-specific scales xi(ω) ∈ Xi. We also
assume a probability distribution in the set of observable feature values and hid-
den class indices

(
x1(ω), ..., xn(ω), y(ω)

) ∈ X1 × ...× Xn ×Y, and that training
set members (X,Y ) = {x1j , ..., xnj , yj , j = 1, ..., N }, xij = xi(ωj), yj = y(ωj),
are sampled independently. Since the kernel-based approach removes the math-
ematical distinction between different kinds of feature scales, we assume all the
modality-specific features xi(ω) ∈ Xi to be real-valued Xi = R.

Let ϕ1 (x1, ..., xn |a1, ..., an , b, y) with y = ±1 be two parametric families of
probability densities in the joint feature space X1 × ... × Xn associated with a
discriminant hyperplane

∑n
i=1 aixi + b ≷ 0 and concentrated predominantly on

opposite sides of it. We shall consider that the improper densities

ϕ (x1, ..., xn | a1, ..., an , b, y) ={
const, y (

∑n
i=1 aixi+b) > 1,

exp
[−c

(
1−y (

∑n
i=1 aixi+b)

)]
, y (

∑n
i=1 aixi+b) < 1,

const = 1, by convention, expresses the assumption that the random feature
vectors of both classes of objects are uniformly distributed over their half-spaces,
with parameter c controlling the probability of incorrect location.

Let, further, the direction vector (a1, ..., an) of the discriminant hyperplane∑n
i=1 aixi + b ≷ 0 be considered as a random vector distributed in accordance

with a priori density Ψ(a1, ..., an |µ) parametrized by some variable µ. No prior
information is assumed concerning b, hence, Ψ(a1, ..., an, b |µ) ∝ Ψ(a1, ..., an|µ).

Consequently, the a posteriori joint distribution density of the parameters of
the discriminant hyperplane w.r.t. the training set is proportional to the product
P (a1, ..., an, b |X, Y, µ) ∝ Ψ(a1, ..., an |µ) × Φ(X |Y, a1, .., an, b). It is natural to



consider the maximum point of this a posteriori density as the object of training:

(â1, ..., ân, b̂) =
arg max [ln Ψ(a1, ..., an |µ) + ln Φ(X |Y, a1, .., an, b)] .

It is easy to show that, under these assumptions, we obtain the following
training criterion:

{
− ln Ψ(a1, ..., an|µ)+c

∑N
j=1δj → min

(a1,...,an,b,δ1,...,δN )
,

yj (
∑n

i=1 aixij +b) ≥ 1−δj , δj ≥ 0, j = 1, ..., N.
(1)

In particular, if we assume Ψ(a1, ..., an |µ) = Ψ(a1, ..., an) to be the joint
normal distribution of independent constituents with zero mathematical expec-
tations and identical variance r, and set C = 2rc, we obtain the classical SVM
with real-valued features xij ∈ Xi = R and elements of the direction vector
ai ∈ Xi = R forming a discriminant hyperplane in X1 × ...× Xn = Rn:

{∑n
i=1 a2

i + C
∑N

j=1 δj → min
(a1,...,an,b,δ1,...,δN )

,

yj (
∑n

i=1 aixij +b) ≥ 1−δj , δj ≥ 0, j = 1, ..., N.
(2)

In terms of the kernels Ki(x′i, x
′′
i ) : Xi×Xi → R defined in the scales of arbi-

trary features xi ∈ Xi, the classical SVM (2) is formulated as the optimization
problem 




∑n
i=1 Ki(ai, ai)+C

∑N
j=1δj → min

(a1,...,an,b,δ1,...,δN )
,

yj (
∑n

i=1 Ki(ai, xij) + b) ≥ 1− δj , δj ≥ 0,
j = 1, ..., N.

(3)

In the general case, elements of the direction vector ai do not exist in the
original feature scales Xi, but belong rather to the hypothetical linear closures
X̃i ⊇ Xi into which the kernels embed them. This does not affect the SVM prin-
ciple, since at the minimum point ai =

∑
j: λj>0 λjyjxij ∈ X̃i the discriminant

hyperplane applicable to any new point (xi ∈ Xi, i = 1, . . . , n)
∑

j: λj>0
λjyj

∑n

i=1
Ki(xij , xi) + b ≷ 0 (4)

is completely determined by Lagrange multipliers λj ≥ 0 at the inequality con-
straints in (3), namely, by those of them which are positive and define the support
objects. To find the Lagrange multipliers, it is enough to solve the well-known
dual quadratic-programming problem:





N∑

j=1

λj−(1/2)
N∑

j=1

N∑

l=1

yjyl

( n∑

i=1

Ki(xij , xil)
)
λjλ l → max,

N∑

j=1

yjλj = 0, 0 ≤ λj ≤ C/2, j = 1, ..., N.

(5)

In the following two Sections, we consider two versions of the a priori dis-
tribution Ψ(a1, ..., an |µ) resulting in two different feature- and kernel-selective
SVMs, in which the parameter µ will control the desired selectivity level.



3 The continuous training technique with
supervised selectivity

The direction elements ai are assumed to be conditionally normally distributed
w.r.t. different random variances ri:

ψ(ai | ri) =
(
1
/

r
1/2
i (2π)1/2

)
exp

(−(1/2ri)a2
i

)
,

Ψ(a1, ..., an | r1, ..., rn) ∝(∏n
i=1 ri

)−1/2

exp
(
−(1/2)

∑n
i=1 (1/ri)a2

i

)
.

Let us then consider independent a priori gamma distributions of inverse
variances γ

(
(1/ri) |α, β

) ∝ (1/ri)α−1 exp (−β (1/ri)) with identical mathe-
matical expectations E(1/ri) = α/β and variances E

(
(1/ri)2

)
= α

/
β2, and

set α = (1 + µ)2
/
2µ, β = 1/2µ.

We now have a parametric family of distributions defined only by µ ≥ 0, such
that E(1/ri) = (1 + µ)2 and E

(
(1/ri)2

)
= 2µ(1 + µ)2. If µ → 0, values 1/ri

approach identity 1/ri
∼= ... ∼= 1/rn

∼= 1, however, if µ grows, the independent
nonnegative values 1/ri may differ arbitrarily. The joint a priori distribution of
independent inverse variances will be proportional to the product

G(r1, ..., rn |µ)∝
(

n∏

i=1

(1/ri)

)α−1

exp

(
−β

n∑

i=1

(1/ri)

)
.

The maximum point of the joint a posteriori density P (a1, ..., an, b, r1, ..., rn|X, Y, µ),
proportional to the product Ψ(a1, ..., an | r1, ..., rn) G(r1, ..., rn |µ) Φ(X | Y, a1, .., an, b),
is considered as the object of training.

In the case of real-valued features xi ∈ R, the resulting training criterion has
the form 




∑n
i=1

[
(1/ri)

(
a2

i +(1/µ)
)
+((1/µ)+1+µ) ln ri

]
+

C
∑N

j=1 δj → min (ai∈R, ri, b, δj) ,

yj (
∑n

i=1aixij +b) ≥ 1− δj , δj ≥ 0, j = 1, ..., N,
ri ≥ ε,

(6)

where ε > 0 is a sufficiently small number. Smaller ri implies smaller ai, and the
ith feature weakly affects the discriminant hyperplane

∑n
i=1 aixi + b ≷ 0.

Replacing a2
i by Ki(ai, ai) and aixij by Ki(ai, xij) in (6), yields the analogous

training criterion for kernel-represented modalities xi ∈ Xi :



∑n
i=1

[
(1/ri)

(
Ki(ai, ai) + (1/µ)

)
+(

(1/µ) + 1 + µ
)
ln ri

]
+ C

∑N
j=1 δj → min

ai∈X̃i,ri,b,δj

,

yj

(∑n
i=1Ki(ai, xij)+b

)≥1−δj , δj≥0, j =1, . . . ,N, ri ≥ ε.

(7)

If the weights ri are fixed, there is no need to evaluate the real numbers ai ∈ R
in (6) or the abstract elements of linear closures ai ∈ X̃i in (7), it is enough to find
the Lagrange multipliers λj ≥ 0 in the representation ai = ri

∑
j: λj>0 yjλjxij by

solving the dual quadratic-programming problem which is a slight modification
of (5):







N∑

j=1

λj−1
2

N∑

j=1

N∑

l=1

yjyl

( n∑

i=1

riKi(xij , xil)
)
λjλ l→max,

N∑

j=1

yjλj = 0, 0 ≤ λj ≤ C/2, j = 1, ..., N.

(8)

In the kernel form∑
j: λj>0

yjλj

∑n

i=1
riKi(xij , xi) + b ≷ 0 (9)

of the discriminant hyperplane
∑n

i=1Ki(ai, xi)+b ≷ 0, in contrast to the dis-
criminant hyperplane in SVM (4), weights are now assigned to the features, so
that small ri suppress the respective features.

However, the weights are unknown in (7). To solve this optimization prob-
lem for a fixed µ, we apply the Gauss-Seidel iteration to the variable groups
(a1, ..., an, b, δ1, . . . , δN ) and (r1, ..., rn), with initial values (r0

i = 1, i = 1, ..., n).
Once the solution λk

1 , . . . , λk
N , i.e. (ak

1 , ..., ak
n), is found at the k th iteration

with the current approximations (rk
1 , . . . , rk

n), the revised values of the variances
(rk+1

1 , ..., rk+1
n ) are defined as

rk+1
i = r̃k+1

i if r̃k+1
i ≥ ε, rk+1

i = ε otherwise,

r̃k+1
i =

(ak
i )2 + 1/µ

1/µ + 1 + µ
=

∑
j:λk

j >0

∑
l:λk

l >0 yjyl (rk
i )2Ki(xij , xil)λk

j λk
l + 1/µ

1/µ + 1 + µ
.

(10)

This procedure typically converges in 10-15 steps, and displays a pronounced
tendency to suppress redundant features by allocating very small but non-zero
weights ri in the discriminant hyperplane (9).

The criterion (6) is thus the training principle for Relevance Kernel Ma-
chine (RKM) [4, 5] with supervised selectivity parametrically determined by
0 ≤ µ < ∞. If µ → 0 all the variances equal unity (10), and we obtain the
usual SVM (2). If µ →∞, we have

∑n
i=1

[
(1/ri)a2

i +(1+µ) ln ri

]
+ C

∑N
j=1 δj→

min in (6), which is a more selective training criterion than the original RKM∑n
i=1

[
(1/ri)a2

i + ln ri

]
+ C

∑N
j=1 δj → min [4].

4 Signature verification via selective fusion of on-line and
off-line kernels

4.1 Kernels produced by metrics

Let ω′ and ω′′ be two signatures represented by signals or images, and ρ(ω′, ω′′)
be a metric evaluating dissimilarity of signatures from a specific point of view.
Then function

K(ω′, ω′′) = exp
[−γ ρ2(ω′, ω′′)

]
(11)



has the sense of their pair-wise similarity. If coefficient γ > 0 is large enough,
this function will be a kernel in the set of signatures, usually called the radial
kernel.

As a rule, it is impossible to know in advance which of possible metrics
is more appropriate for a concrete person. The advantages of the multi-kernel
approach to the problem of on-line signature verification were demonstrated in
[4]. We extend here the kernel-based approach onto the problem of combining
the on-line and off-line modalities (Figure 1) into an entire signature verification
technique.

Fig. 1. Off-line (images) and on-line (signals) representation of signatures.

In this work, we tested 12 different metrics in the set of on-line signatures
and 4 metrics computed from the pictorial off-line representation. So, all in all,
we combined 16 different on-line and off-line kernels listed in Table 1.

Table 1. The kernels studied in the experiments



4.2 Metrics in the set of on-line signatures.

Each on-line signature is represented by a multi-component vector signal which
initially includes five components xt = (x1

t · · ·xn
t ): two pen tip coordinates

(X, Y ), pen tilt azimuth (Az) and altitude (Alt), and pen pressure (Pr) (Fig.
1). We supplement the signals with two additional variables - pen’s velocity and
acceleration.

For comparing pairs of signals of different lengths [ω′ = (x′s, s = 1, . . . , N ′),
ω′′ = (x′′s , s = 1, . . . , N ′′)], we use the principle of dynamic time warping with
the purpose of aligning the vector sequences [4]. Each version of alignment
w(ω′, ω′′) is equivalent to a renumbering of the elements in both sequences ω′w =
(x′w,s′k

, k = 1, . . . , Nw), ω′′w = (x′′w,s′′k
, k = 1, . . . , Nw), Nw ≥ N ′, Nw ≥ N ′′. We

tested 12 different metrics defined by 6 different subsets of signal components
and 2 different values of the alignment rigidity parameter β [4] as shown in
Table 1:

ρ(ω′, ω′′|β) = min
w

√∑Nw

k=1
‖x′w,s′k

− x′′w,s′′k
‖2. (12)

4.3 Metrics in the set of off-line signatures

For comparing grayscale images (patterns) representing off-line signatures we
apply the technique of tree-structured pattern representation proposed in [10].

For the given pattern P , the recursive scheme described in [10] produces
a pattern representation R in the form of a complete binary tree of elliptic
primitives (nodes) Q: R = {Qn : 0 ≤ n ≤ nmax}, where n is the node number
of the level ln = blog2(n = 1)c.

Let R′ and R′′ be a pair of tree-structured representations, and R′
⋂

R′′

be their intersection formed by the pairs of nodes (Q′
n, Q′′

n) having the same
number n. For comparing any two corresponding nodes Q′n ∈ R′ and Q′′

n ∈ R′′,
a dissimilarity function d(Q′n, Q′′

n) ≥ 0 can be easily defined through parameters
of each primitive such as center vector, orientation vectors with their sizes (along
two principal axes of the primitive), and the mean brightness value. Using these
parameters, we define a loss function

D(Q′
n, Q′′

n) =
{

d(Q′n, Q′′
n), if Q′

n and/or Q′′n are ”end” nodes,
0, otherwise,

where d(Q′n, Q′′
n) = α1d1(Q′n, Q′′

n)+α2d2(Q′
n, Q′′

n)+α3d3(Q′
n, Q′′

n), α1, α2, α3 ≥ 0,
α1 +α2 +α3 = 1. Here, di(Q′n, Q′′

n) is a distinction function between the centers
of the primitives, their orientation and size parameters, and the mean brightness
values for i = 1, 2, 3, respectively.



Then, following [10], we define the distinction measure (metric) of the trees
R′ and R′′ as follows:

ρ(R′, R′′ | α1, α2, α3) =
∑

R′
⋂

R′′
2−lnD(Q′n, Q′′

n) =

α1

∑
R′

⋂
R′′

2−lnd1(Q′n, Q′′n)+

α2

∑
R′

⋂
R′′

2−lnd2(Q′n, Q′′n)+

α3

∑
R′

⋂
R′′

2−lnd3(Q′n, Q′′n),

(13)

where the sum is taken over all pairs (Q′n, Q′′
n) ∈ R′

⋂
R′′.

We competitively applied three basic distinction measures of the form (13)
ρ1(R′, R′′) = ρ(R′, R′′ | 1, 0, 0), ρ2(R′, R′′) = ρ(R′, R′′ | 0, 1, 0), ρ3(R′, R′′) =
ρ(R′, R′′ | 0, 0, 1), and the uniform mixture ρ4(R′, R′′) = ρ(R′, R′′ | 1/3, 1/3, 1/3).

4.4 Signature database and results of experiments

In the experiment, we used the database of the Signature Verification Competi-
tion 2004 [11] that contains vector signals of 40 persons (Fig. 1). On the basis
of these signals we generated grayscale images (256× 256 pixels) with 256 levels
of brightness corresponding to the levels of pen pressure in the original signals.

For each person, the training set consists of 400 signatures, namely, 5 sig-
natures of the respective person, 5 skilled forgeries, and 390 random forgeries
formed by 195 original signatures of other 39 persons and 195 skilled forgeries for
them. The test set for each person consists of 69 signatures, namely, 15 genuine
signatures, 15 skilled forgeries, and 39 random forgeries. Thus, the total number
of the test signatures for 40 persons amounts to 2760.

For each pair of signature signals, 12 different on-line metrics and 4 off-line
metrics were simultaneously computed and, respectively, 16 different kernels were
evaluated (Table 1).

For each person, we tested 18 ways of training based, first, on each of the
initial kernels separately {K1(ω′, ω′′), . . . ,K16(ω′, ω′′)}, second, on the plane fu-
sion of all the individual kernels with equal weights (1/16)

∑16
i=1 Ki(ω′, ω′′), and,

third, on the selective fusion of all the 16 kernels using the continuous training
technique (Section 3) with the selectivity level chosen via cross validation. The
error rates in the total test set of 2760 signatures are shown in Table 2.

It is well seen that the combined kernel obtained by selective kernel fusion
with individually chosen selectivity essentially outperforms each of the single
ones. At the same time, for each of 40 persons whose signatures made the data
set, the kernel fusion procedure has selected only one relevant kernel as the most
adequate representation of his/her handwriting.

5 Conclusions

The kernel-based approach to signature verification enables harnessing the kernel-
selective SVM as one of mathematically most advanced methods of pattern



Table 2. Error rates for single kernels
versus kernel fusion

recognition. This approach predefines the algorithms of both training and recog-
nition, and it remains only to choose the kernel produced by an appropriate
metric in the set of signatures, such that the genuine signatures of the same per-
son would be much closer to each other than those of different persons. However,
different understandings of signature similarity lead to different kernels.

The proposed kernel fusion technique automatically chooses the most ap-
propriate subset of kernels for each person in the process of adaptive training.
Experiments with signature data base SVC2004 demonstrate that verification
results obtained by selective fusion of several on-line and off-line kernels in ac-
cordance with the proposed approach essentially outperforms the results based
on both single kernels and their plane fusion.
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