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Abstract 

The problem of prospecting oil and gas reserves in the
crystalline basement of the Earth mantle by way of a
combined interpretation of seismic data registered on the
daylight surface and direct information from a sparse net
of exploratory wells is considered as pattern recognition
problem in which the role of objects whose class member-
ship is to be recovered is played by points of the three-
dimensional underground medium. Local properties of
reflected seismic signals serve as features of the member-
ship of the respective rock mass zones in the class of col-
lectors, i.e. spatial areas capable of accumulating fluids,
whereas direct data obtained from exploratory wells
serve as trainer's information. A new spatial approach to
supervised pattern recognition is proposed which makes
use of the fact that objects to be recognized are arranged
in an array in space. Along with the additional assump-
tion that immediately adjacent points offer a tendency to
belong to the same class, this fact allows for drawing re-
liable decisions from relatively unreliable features.

1. Introduction

All the classical statements of the pattern recognition
problem deal with indivisible objects each of which is
assumed to belong, as a whole, to one of a finite set of
classes. The observer has to discover the hidden class
membership of the given object by a vector of its features.

However, there are many practical problems in which it
is required to make a decision on the classes, at once, of
all the objects arranged in an array under the additional a
priori assumption that immediately adjacent objects offer
a tendency to belong to the same class. It is clear that the
availability of a priori information on the interdependence
of classes in the array must contribute essentially to the
accuracy of recognition in comparison with the case when
the classes are independent.

In this work, we consider a practical problem in which
objects of recognition are arranged in an array in multidi-
mensional space. This is the problem of prospecting oil
and gas reserves in the so-called crystalline basement of

the Earth mantle by way of a combined interpretation of
direct information on the location of reservoirs obtained
from a rare net of highly expensive exploratory wells and
relatively cheap spatially complete seismic data registered
on the daylight surface. Local properties of reflected
seismic signals serve as features of the membership of the
respective rock mass zones in the class of collectors, i.e.
underground areas capable of accumulating fluids,
whereas direct data obtained from exploratory wells serve
as trainer's information.

The unknown combination of classes at the points of
the medium being examined is assumed to be realization
of a hidden Markov random field. But in contrast to the
one-dimensional case, the spatial Markov assumption
does not lead automatically to a simple recognition algo-
rithm [1]. Therefore, we resort to an approximation of the
lattice-like neighborhood relation in the array by a combi-
nation of tree-like ones, which allows for an effective al-
gorithmic solution [2,4].

2. Seismic and drilled information on local
properties of the rock mass

A seismic exploratory data set consists of synchronous
records of reflected seismic signals registered by a large
number of geophones (seismic sensors) placed in the
nodes of a rectangular lattice on the Earth surface. As the
source of the initial seismic energy, usually serves a series
of explosions. After quite a complicated processing, it
becomes possible to identify the time axis with depth un-
der the respective sensor, so that the resulting seismic data
array gives a three-dimensional model of the hidden space
being studied, as it is shown in Fig. 1.

The sedimentary rocks forming the upper coat of the
Earth mantle have served, up to now, as the main source
of oil and gas. However, the reserves of hydrocarbons in
this relatively thin layer covering the massive body of the
crystalline basement are quickly getting exhausted. A sig-
nificant increase of prospected oil and gas reserves in the
coming century cannot be provided without assimilating
the basement interval of the mantle thickness.

Geophones
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Time interpreted as depth

Figure 1. Fragment of a vertical seismic section
through upper sedimentary cover and underlying
crystalline basement.

These two intervals of the depth scale are essentially
different from the viewpoint of hydrocarbon prospecting.
The most preferable way of mining information on the
structure of gas- and oil-promising objects are seismic
explorations, that allow for examining the underground
medium from the daylight surface without drilling highly
expensive exploratory wells and give a one-to one corre-
spondence between elements of the data array and points
of the respective spatial interval. But the presently exist-
ing principles of seismic data analysis are essentially ori-
ented to recovering quasi-horizontal reflecting boundaries
between sedimentary rock strata, and are not applicable to
the basement massif where stratification is practically ab-
sent.

One of the main geological factors that determine the
ability of a basement fragment to serve as collector of
fluids is its increased hollowness caused by presence of
fractures and caverns. Because of the unavailability, at
present, of less expensive means, the main source of in-
formation on the local hollowness of the basement rock
mass are data acquired from exploratory wells. At the
same time, the inevitably sparse net of wells does not al-
low for extending, with a sufficient reliability, the results
of such point-wise estimates onto the entire volume of the
potential reservoir.

The aim of this work is to fill in this gap. The central
idea is to use the seismic image of the basement fragment
for interpolation of the sparse drilled information on the
location of collectors in the crystalline rock.

Results of our preliminary investigations say that the
differences in physical properties of the basement rock
cause marked distinctions in the three-dimensional local
texture of the seismic picture around the respective ele-
ments of the data array [3].

Fractures, pores and caverns create in a crystalline
massif a great number of microinhomogeneities, hence, an
incident seismic wave will generate in such a medium a
great number of micro-diffracted waves or scatter essen-
tially. On the contrary, a monolith homogeneous crystal-

line body must be almost transparent in the seismic sense.
So, the high-frequency component of the seismic field, or,
in other words, its texture, must be different in monolith
and substantially fractured zones.

Let =X  ( )Tttttxt ∈= ),,(, 321  be the original seismic

data array, where ),( 21 tt  are horizontal coordinates and 3t
is time interpreted as depth under the Earth surface. As
mathematical model of the seismic texture, we use the
spatial autoregression equation whose coefficients are
assumed to be different at different points =tx

ttSs st
s
t bxa ξ+∑ ∈ + , where S  is a three-dimensional auto-

regeression mask and tξ  is white noise with variance
taken equal to unity. We estimated the autoregression pa-

rameters );,( t
s
tt bSsa ∈=a  at each point of the space by

a special technique [3], but it is enough to conventionally
assume that they are found as constants in sufficiently
small volumes. As features of the local spatial texture, we

used four secondary parameters =ty  ),...,( 41
tt yy  calcu-

lated from the autoregression model, namely, the local

irregularity of signal oscillations tt by =1 , full local vari-

ance of the signal 2
ty , energy of the seismic field in a nar-

row frequency band in the vertical direction 3
ty , and that

in the horizontal direction 4
ty .

Having been quantitatively evaluated, the local texture
characteristics ty  will show the basement areas with
similar mechanical properties, which can serve as path-
ways of spatial interpolation of the drilled direct informa-
tion on collector zones between the exploratory wells.

By its spirit, such an idea falls into the competence
area of supervised pattern recognition, where the points of
the basement medium fragment are considered as entities
to be allocated over a finite number of rock types. Each
point is characterized by the seismic image in some im-
mediate vicinity of its match in the data array, whereas the
part of trainer's data is played by the information on the
rock type acquired from the exploratory wells only for a
part of the points. It is required to extend the known local
class membership of the points that happen just at the ver-
tical wells drilled through the basement rock onto the rest
of the spatial interval being examined.

However, the essence of the pattern recognition prob-
lem of such a kind substantially differs from the tradi-
tional classical version of this problem.

3. Problem and principles of spatial pattern
recognition

Let T  be set of elements Tt ∈  that are to be consid-
ered jointly. Let, further, TTG ×⊂  be an arbitrary undi-
rected graph without loops interpreted as relation of im-
mediate adjacency between elements Gtt ∈′′′ ),( .

In our geophysical application, the role of Tt ∈  will
be played by elements of the seismic data array which are



associated with discrete points of the respective three-
dimensional underground interval =∈= Ttttt ),,( 321

}3,2,1;,...,1{ == iNt ii , and graph G  will be taken in the
form of the rectangular lattice that represents the natural
neighborhood relation in space.

Let each element Tt ∈  be assigned a random index
},...,1{ mMkt =∈  of its hidden membership in one of m

classes and random vector n
t R∈y  of its observable fea-

tures. Hence, being considered jointly, these variables will
form a two-component random field ),( YK ,

),( TtkK t ∈= , ),( TtY t ∈= y .

In particular, in the problem of finding collector areas
in the basement medium we shall deal with two classes of
crystalline rocks, namely, collectors and non-collectors.

Let the probabilistic properties of the hidden compo-
nent K  be completely known to the observer in the form
of a priori probabilities )(Kp  for all the combinations of
the hidden classes. Then, the individual (marginal) a priori
probabilities of classes )( tt kq  are also known for each of
the elements of the field Tt ∈ . As to the observable fea-
ture vectors, they will be assumed to be conditionally in-

dependent =ϕ )|( KY ∏ ∈
ψ

Tt tt k )|(y  with the same un-

known individual density )|( kyψ .

Our ultimate aim is to restore the class indices of all
the elements by processing the entire field of their feature

vectors )(ˆ YK  on the basis of information given by the
trainer, who is assumed to have indicated the class mem-
berships for a sparse subset of elements Njk

jt ,...,1, = .

For this purpose, it is completely enough to infer, from the
trainer’s data, the a posteriori probabilistic properties of
the hidden random field )|( YKπ , then the solution of the
recognition problem can be found as result of its maximi-
zation

                       )|(maxarg)(ˆ YKYK K π= .                   (1)
From the theoretical viewpoint, the joint a posteriori

probabilities are completely determined by the relation
∝π )|( YK )|()( KYKp ϕ , but the intent to estimate

)|( kyψ  would be a poor choice, because a posteriori
probabilities of classes are, as a rule, much simpler func-
tions of features than conditional densities in the feature
space.

If we observe only one of the feature vectors ty , the a
posteriori probabilities of the hidden class of this element
are proportional to the a priori probabilities and condi-
tional densities ∝)|( ttt kp y )|()( tttt kkq yψ . But if all the

feature vectors ),( TtY t ∈= y  are observed at once, the
conclusion on the class of an element should be inferred,
on the force of the assumed probabilistic interdependence
of class memberships, from the feature vectors of all the
elements. Nevertheless, in accordance with the following

theorem, the individual posterior probabilities )|( ttt kp y ,

mkt ,...,1= , contain all the required information.

Theorem 1. The a posteriori hidden random field of
class memberships is completely determined by the joint a
priori and individual a posteriori probabilities, respec-
tively, )(Kp  and )|( ttt kp y :

∏∏ ∈
∈

∝π
Tt

ttt

Tt
tt

kp
kq

Kp
YK )|(

)(

)(
)|( y .

In most applications, it is hardly reasonable to take a
priori models )(Kp  with different marginal probabilities
of classes for different elements of the array. If the hidden
random field is homogeneous in the sense that

)()( kqkqt =  for all Tt ∈ , we have also =)|( ykpt

)|( ykp , and the training problem for spatial data will
differ not at all from its classical version for independent
objects of recognition. It is sufficient to estimate, using
the trainer’s data, the vector function of a posteriori prob-
abilities in the feature space )|( ykp , mk ,...,1= .

We do not consider how to do this, the respective
methods are commonly adopted. What is new here is the
problem of recognition, which, actually, does not exist in
the classical case, because the a posteriori probabilities

)|( ttkp y  immediately lead to the decision if the class-

memberships tk  are independent in T .
If K  is nontrivial random field, the hidden classes can

be estimated only jointly )(ˆ YK . It is clear that the recog-
nition procedure will essentially depend on the assumption
about the a priory hidden field. In this work, we assume

)(Kp  to be a Markov random field with respect to the
adjacency graph G  in the sense that the conditional a
priori probabilities of classes at an element )|( )(ttt Kkq ,

where ):,()( tsTskK st ≠∈=  is the rest of the field, de-

pend only on those at immediately adjacent elements

)|()|( 0
)()( tttttt KkqKkq = , ( :,0

)( TskK st ∈= )Gts ∈),( .

In our application, the sought-for collector areas are
expected to be stretched in space, what can be expressed

in Markov terms by high values of )|( 0
)(ttt Kkq  if the cur-

rent index tk  is the same as the majority of indices within

the immediate vicinity 0
)(tK .

Theorem 2. If the assembly of hidden variables K  is
a Markov random field with conditional local distribu-

tions )|( 0
)(ttt Kkq  in accordance with adjacency graph

G , and elements of the observable random field )|( KY

are conditionally independent with densities )|( tt kyψ ,

the a posteriori random field )|( YK  is also a Markov
one with respect to the same adjacency graph:

)|()|(),|(),|( 0
)(

0
)()( ttttttttttttt kpKkqKkYKk yy ∝π=π .



Thus, given the field of observable features Y , the lo-
cal Markov properties of the a posteriori hidden random
field )|( YK  are immediately defined by the respective a

priori conditional probabilities )|( 0
)(ttt Kkq  and local a

posteriori ones )|( ttt kp y . But for the adjacency graph G
of general kind, finding the combination of class indices

)(ˆ YK  that maximizes the a posteriori probability (1) is a
hard computational problem of global optimization.

As it was shown in our previous research [4], an algo-
rithm of global optimization exists for the case when the
adjacency graph is a tree. Therefore, in this work, we sub-
stitute the rectangular lattice of spatial neighborhood by a
system of trees as it is shown in Fig. 2. In this case, the
number of elementary operations required for finding the
solution of the recognition problem is proportional to the
number of elements in the data array.

4. Recognition of collector zones in the
basement of the oil field Bombay High

On the basis of this approach, we attempted to forecast
the location of collector zones in the crystalline basement
of the oil field Bombay High on the western coastal shelf
of India in the Arabian Sea. We took for the analysis quite
an old data set obtained in 1972 as a system of vertical
seismic cross-sections covering a part of the field in the
form of a grid 5 × 7 km as it is shown in Fig. 3. The tex-
ture characteristics of the seismic data array were esti-
mated in the cross-sections and interpolated at all the
points of the three-dimensional fragment.

As the source of trainer’s data, served 19 wells that
reached the basement rocks. A group of experts indicated
the boundaries of collector zones in each of the wells on
the basis of studying log data, results of hydraulic testing,
and the measured yields of fluids (oil, gas, or water) from
some intervals of depth. The location of the wells and
trainer’s data at the depth of 300 m under the upper
boundary of the basement are shown in Fig. 3.

   

Figure 2. Graph of the spatial neighborhood between
points of the underground medium and the tree used in-
stead of the lattice for calculating marginal posterior prob-
abilities of classes in one vertical row.

As result of training and recognition, we built a three-
dimensional model of collector zones in the basement
space. The shaded zones in Fig. 3 represent the map of the
found spatial area at the same level of depth under the
basement roof at which the trainer’s data are shown. The

map covers all the positions that had been previously rec-
ommended by experts for drilling from geological consid-
erations [3].
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Figure 3. Trainer’s data and map of estimated collector
zones of the oil field Bombay High at the depth of 300
m under the basement’s upper boundary.
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